User Manual 4.13 Multi Propagation

De Wiki
Révision de 19 décembre 2023 à 13:41 par Admin (discussion | contributions) (Page créée avec « == Introduction == === Scope === This section describes the multi propagator provided by the Patrius library. At this time, only numerical propagator is available for mult... »)

(diff) ← Version précédente | Voir la version courante (diff) | Version suivante → (diff)
Aller à : navigation, rechercher

Introduction

Scope

This section describes the multi propagator provided by the Patrius library. At this time, only numerical propagator is available for multi spacecraft propagation. Generic features about propagators as well as other type of propagators are detailed [ORB_PGEN_Home here].

Javadoc

All the classes related to numerical propagation are in the fr.cnes.sirius.patrius.propagation.numerical.multi package of the Patrius library. The classes related to events detection are in the package fr.cnes.sirius.patrius.propagation.events.multi of the Patrius library. But the interface for multi event detectors is in fr.cnes.sirius.patrius.propagation.events.multi package of the Patrius library. All the classes related to attitude providers for multi satellites are in the package fr.cnes.sirius.patrius.attitudes.multi.

Library Javadoc
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/events/multi/package-summary.html Package fr.cnes.sirius.patrius.propagation.events.multi]
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/events/multi/package-summary.html Package fr.cnes.sirius.patrius.events.multi]
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/events/multi/package-summary.html Package fr.cnes.sirius.patrius.propagation.events.multi]
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/multi/package-summary.html Package fr.cnes.sirius.patrius.propagation.numerical.multi]
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/precomputed/multi/package-summary.html Package fr.cnes.sirius.patrius.propagation.precomputed.multi]
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/sampling/multi/package-summary.html Package fr.cnes.sirius.patrius.propagation.sampling.multi]
Patrius [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/attitudes/multi/package-summary.html Package fr.cnes.sirius.patrius.attitudes.multi]

Links

Other useful links can be found here :

  • [ORB_PRO_Home Classical propagation chapter]
  • [FDY_SST_Home SpacecraftState chapter]

Useful Documents

None as of now.

Package Overview

Multi Numerical Propagator

The multi propagator architecture is copied from [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/Propagator.html Propagator] interface and [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/NumericalPropagator.html NumericalPropagator] class, and added to PATRIUS library.

MultiNumericalPropagator.png

Three propagation modes

Like single spacecraft propagation, the multi spacecraft propagation can be performed in different propagation modes : slave, master and ephemeris generation.

Features Description

The PATRIUS library offers a [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/multi/MultiNumericalPropagator.html multi numerical propagator]. It aims at propagating several [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/SpacecraftState.html SpacecraftState] at the same time using numerical propagation. The N [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/SpacecraftState.html SpacecraftState] are propagated during the same time interval using the same [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/math/ode/FirstOrderIntegrator.html FirstOrderIntegrator].

Each state is identified with an ID of type String. All states can be completely different but they should have the same internal date.

As for the mono-satellite numerical propagation, it is possible to define the following global propagation parameters:

  • The type of orbital parameters and position angle
  • The propagation mode

For each state, it is possible to configure the following elements:

  • The central attraction coefficient
  • The force models
  • The tolerances used for orbital parameters and the tolerances applied on additional states.
  • The additional states equations associated with the additional states
  • The attitude providers

It is possible to define event detectors applied on a specific state or global event detectors applied on several states.

Note that the NumericalPropagator and the MultiNumericalPropagator do not use anymore the Newtonian gravity model by default. It should now be added manually to the list of the force models before starting the propagation.

Getting started

Here is presented a basic instanciation of the multi numerical propagator.

Create propagator from FirstOrderIntegrator

The [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/multi/MultiNumericalPropagator.html MultiNumericalPropagator] should be created by giving a [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/math/ode/FirstOrderIntegrator.html FirstOrderIntegrator].

final MultiNumericalPropagator propagator = new MultiNumericalPropagator(integrator);

The integrator could be declared using absolute and relative tolerances represented by  :

  • a scalar value
final double abstolScal = 1.0e-10;
final double reltolScal = 1.0e-10;
final FirstOrderIntegrator integratorScal = new DormandPrince853Integrator(0.001, 200, abstolScal, reltolScal);
  • a vector
final double[] abstolVec = { 1e-5, 1e-5, 1e-5, 1e-8, 1e-8, 1e-8};
final double[] reltolVec = { 1e-10, 1e-10, 1e-10, 1e-10, 1e-10, 1e-10};
final FirstOrderIntegrator integratorVec = new DormandPrince853Integrator(0.1, 60., abstolVec, reltolVec);

The orbit tolerances (vector or scalar tolerances) given to the integrator are used as default tolerances. The orbit tolerances could be defined in vector type using the method setOrbitTolerance.

Add initial states

Initial states could be added to the propagator using the method addInitialState(SpacecraftState, String). Each added state is defined by a unique ID. An error is raised if :

  • the input spacecraft ID is empty or null.
  • a state with the same ID was already added to the propagator.
  • the date associated with the added state is different from the date associated with the states previously added. (All states are propagated from the same date).

Note that, the initial state should be added before adding an additional equation, an attitude provider, a force model, an event ... etc ... associated with this state. Otherwise, the input spacecraft Id will not be recognized.

The map of the added states could be retrieved with getInitialStates()

Add additional equations

As for the [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/NumericalPropagator.html NumericalPropagator], additional equations corresponding to the additional states of each states can be added to the propagator.

These additional equations are given to the multi numerical propagator for a specific state thanks to the following methods :

  • addAdditionalEquation(AdditionalEquation, String)
  • addAttitudeEquation(AttitudeEquation, String)
  • setMassProviderEquation(MassProvider, String) (This method should be called only once, mass provider must be mass provider used in force models)

The method setAdditionalStateTolerance(String, double[], double[]) may be used to add variation tolerance values (absolute and relative) to a specific additional state.

For each state, the additional states should correspond with the added additional equations (same name, same size). As of PATRIUS 4.13, partial derivatives equations are available for multi-numerical propagation with the class MultiPartialDerivativesEquations. They are used exactly the same way as for mono-satellite propagation. Note that a set of partial derivatives equations has to be provided for each satellite, allowing for different sets of partial derivatives equations for each satellite.

See [ORB_PRO_UseP mono numerical propagation] chapter for more details.

The following example shows how to propagate two basic SpacecraftState :

// Initial date
final AbsoluteDate date = AbsoluteDate.J2000_EPOCH;
 
// Constants
final double mu = Constants.EGM96_EARTH_MU;
final Frame gcrf = FramesFactory.getGCRF();
final String STATE1 = "STATE1";
final String STATE2 = "STATE2";
final String BODY = "body";
 
// First initial state
final Orbit orbit1 = new KeplerianOrbit(7500000, 0.001, 0.40, 0, 0, 0,PositionAngle.MEAN, gcrf, date, mu);
final MassProvider massModel = new SimpleMassModel(1000., BODY);
final SpacecraftState state1 = new SpacecraftState(orbit1, massModel);
 
// Second initial state
final Vector3D position = new Vector3D(7.0e6, 1.0e6, 4.0e6);
final Vector3D velocity = new Vector3D(-500.0, 8000.0, 1000.0);
final Orbit orbit2 = new EquinoctialOrbit(new PVCoordinates(position, velocity), gcrf, date, mu);
final AttitudeProvider law = new ConstantAttitudeLaw(FramesFactory.getEME2000(), Rotation.IDENTITY);
final Attitude attitude = law.getAttitude(orbit2, date, gcrf);
final SpacecraftState state2 = new SpacecraftState(orbit2, attitude);
 
// Add initial states to the propagator
propagator.addInitialState(state1, STATE1);
propagator.addInitialState(state2, STATE2);
 
// Note that the NumericalPropagator and the MultiNumericalPropagator do not use anymore the Newtonian gravity model by default. It should now be added manually to the list of the force models before starting the propagation.
mainPropagator.addForceModel(new DirectBodyAttraction(new NewtonianGravityModel(mu, STATE1));
mainPropagator.addForceModel(new DirectBodyAttraction(new NewtonianGravityModel(mu, STATE2));
 
// Add additional equation associated with the mass model of the first state
// Mass provider must be mass provider used in force models.
propagator.setMassProviderEquation(massModel, STATE1);
propagator.setAdditionalStateTolerance("MASS_" + BODY, new double[]{1e-7}, new double[]{1e-7}, STATE1);
 
// Set attitude provider associated with the second state
propagator.setAttitudeProvider(law, STATE2);
 
// propagation
final Map<String, SpacecraftState> finalStates = propagator.propagate(date.shiftedBy(propagationDuration));

Propagate the attitude

As for the [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/NumericalPropagator.html NumericalPropagator], to propagate the [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/attitudes/Attitude.html Attitude] of a specific state, two treatments could be applied :

  • compute the attitude with an [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/attitudes/AttitudeProvider.html AttitudeProvider] : setAttitudeProvider(AttitudeProvider, String).
    It is possible to deals with :
    • a single attitude by calling setAttitudeProvider(AttitudeProvider, String)
    • two attitudes by calling setAttitudeProviderForces(AttitudeProvider, String) or setAttitudeProviderEvents(AttitudeProvider, String). It is not possible to call setAttitudeProvider(AttitudeProvider, String) and setAttitudeProviderForces(AttitudeProvider, String) (or setAttitudeProviderEvents(AttitudeProvider, String))
  • propagate the attitude as a 7-dimension additional state : addAttitudeEquation(AttitudeEquation, String).
    In practical terms, the user has to build the additional equation by extending the abstract class [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/AttitudeEquation.html AttitudeEquation], call addAttitudeEquation(AttitudeEquation, String).

See [ORB_PRO_UseP mono numerical propagation] chapter for more details.

Add force model

For each state, a force model could be added to the list of forces used at each step by the propagator.

propagator.addForceModel(model, STATE1);

See [ORB_PHY_Home force model] chapter for more details.

Add event detector

The user could add :

  • an [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/events/EventDetector.html EventDetector] associated with a specific state using addEventDetector(EventDetector, String)
  • a [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/events/multi/MultiEventDetector.html MultiEventDetector] associated with several states added to the propagator using addEventDetector(MultiEventDetector)

See [MIS_EVT_Home events presentation] and [MIS_MEVEN_Home multi events presentation] chapters for more details.

Add attitude provider

The user could add :

  • an [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/attitudes/AttitudeProvider.html AttitudeProvider] returning the independant attitude of one satellite using setAttitudeProvider(AttitudeProvider, String)
  • a [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/attitudes/multi/MultiAttitudeProvider.html MultiAttitudeProvider] returning the attitude of one satellite correlated to the other using setAttitudeProvider(MultiAttitudeProvider, String)

Note that method getAttitudeProvider() always returns a MultiAttitudeProvider whether you provided a single or multi attitude provider. If you provided a single AttitudeProvider then you can retrive it by calling ((MultiAttitudeProviderWrapper) multiNumericalPropagator.getAttitudeProvider()).getAttitudeProvider()

Contents

Interfaces

Interface Summary Javadoc
**MultiPropagator This interface provides a way to propagate several states at any time. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/MultiPropagator.html ...]
**MultiAttitudeProvider This interface is an attitude provider taking into account the state of the others satellites. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/attitudes.multi/MultiAttitudeProvider.html ...]
**MultiModeHandler Common interface for all multi propagator mode handlers initialization. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/multi/MultiModeHandler.html ...]

Classes

Class Summary Javadoc
SpacecraftState This class is the representation of a complete state holding orbit, attitude for forces and for events computation and additional states at a given date. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/SpacecraftState.html ...]
MultiNumericalPropagator This class propagates several SpacecraftState using numerical integration. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/multi/MultiNumericalPropagator.html ...]
AttitudeEquation This class represents attitude differential equations. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/AttitudeEquation.html ...]
MultiIntegratedEphemeris This class stores sequentially generated orbital parameters for later retrieval. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/precomputed/multi/MultiIntegratedEphemeris.html ...]
MultiPartialDerivativesEquations This class computes the partial derivatives equations for one satellite. It is handled exactly as its mono-satellite counterpart PartialDerivativesEquations. [[[:Modèle:JavaDoc4.13]]/fr/cnes/sirius/patrius/propagation/numerical/multi/MultiPartialDerivativesEquations.html ...]