org.orekit.orbits
Class CircularOrbit

java.lang.Object
  extended by org.orekit.orbits.Orbit
      extended by org.orekit.orbits.CircularOrbit
All Implemented Interfaces:
Serializable, TimeInterpolable<Orbit>, TimeShiftable<Orbit>, TimeStamped, PVCoordinatesProvider

public final class CircularOrbit
extends Orbit

This class handles circular orbital parameters.

The parameters used internally are the circular elements (see CircularParameters for more information.

The instance CircularOrbit is guaranteed to be immutable.

Author:
Luc Maisonobe, Fabien Maussion, Véronique Pommier-Maurussane
See Also:
Orbit, KeplerianOrbit, CartesianOrbit, EquinoctialOrbit, Serialized Form

Field Summary
static int ECCENTRIC_LONGITUDE_ARGUMENT
          Deprecated. as of 6.0 replaced by PositionAngle
static int MEAN_LONGITUDE_ARGUMENT
          Deprecated. as of 6.0 replaced by PositionAngle
static int TRUE_LONGITUDE_ARGUMENT
          Deprecated. as of 6.0 replaced by PositionAngle
 
Constructor Summary
CircularOrbit(double a, double ex, double ey, double i, double raan, double alpha, int type, Frame frame, AbsoluteDate date, double mu)
          Deprecated. as of 6.0 replaced by CircularOrbit(double, double, double, double, double, double, PositionAngle, Frame, AbsoluteDate, double)
CircularOrbit(double a, double ex, double ey, double i, double raan, double alpha, PositionAngle type, Frame frame, AbsoluteDate date, double mu)
          Creates a new instance.
CircularOrbit(IOrbitalParameters parameters, Frame frame, AbsoluteDate date)
          Creates a new instance.
CircularOrbit(Orbit op)
          Constructor from any kind of orbital parameters.
CircularOrbit(PVCoordinates pvCoordinates, Frame frame, AbsoluteDate date, double mu)
          Constructor from cartesian parameters.
 
Method Summary
protected  double[][] computeJacobianEccentricWrtCartesian()
          Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
protected  double[][] computeJacobianMeanWrtCartesian()
          Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
protected  double[][] computeJacobianTrueWrtCartesian()
          Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
 double getA()
          Get the semi-major axis.
 double getAlpha(PositionAngle type)
          Get the latitude argument.
 double getAlphaE()
          Get the eccentric latitude argument.
 double getAlphaM()
          Get the mean latitude argument.
 double getAlphaV()
          Get the true latitude argument.
 double getCircularEx()
          Get the first component of the circular eccentricity vector.
 double getCircularEy()
          Get the second component of the circular eccentricity vector.
 CircularParameters getCircularParameters()
          Getter for underlying circular parameters.
 double getE()
          Get the eccentricity.
 double getEquinoctialEx()
          Get the first component of the equinoctial eccentricity vector.
 double getEquinoctialEy()
          Get the second component of the equinoctial eccentricity vector.
 double getHx()
          Get the first component of the inclination vector.
 double getHy()
          Get the second component of the inclination vector.
 double getI()
          Get the inclination.
 double getLE()
          Get the eccentric latitude argument.
 double getLM()
          Get the mean latitude argument.
 double getLv()
          Get the true latitude argument.
 IOrbitalParameters getParameters()
          Get underlying orbital parameters.
 double getRightAscensionOfAscendingNode()
          Get the right ascension of the ascending node.
 OrbitType getType()
          Get the orbit type.
protected  PVCoordinates initPVCoordinates()
          Compute the position/velocity coordinates from the canonical parameters.
 CircularOrbit interpolate(AbsoluteDate date, Collection<Orbit> sample)
          Get an interpolated instance.
protected  void orbitAddKeplerContribution(PositionAngle type, double gm, double[] pDot)
          Add the contribution of the Keplerian motion to parameters derivatives
protected  CircularOrbit orbitShiftedBy(double dt)
          Get a time-shifted orbit.
 String toString()
          Returns a string representation of this Orbit object.
 
Methods inherited from class org.orekit.orbits.Orbit
addKeplerContribution, createInverseJacobian, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobian, getJacobianWrtCartesian, getJacobianWrtParameters, getJacobianWrtParametersEccentric, getJacobianWrtParametersMean, getJacobianWrtParametersTrue, getKeplerianMeanMotion, getKeplerianPeriod, getKeplerianTransitionMatrix, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, isPositiveDefinite, setJacobianWrtParametersEccentric, setJacobianWrtParametersMean, setJacobianWrtParametersTrue, shiftedBy
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

MEAN_LONGITUDE_ARGUMENT

@Deprecated
public static final int MEAN_LONGITUDE_ARGUMENT
Deprecated. as of 6.0 replaced by PositionAngle
Identifier for mean latitude argument.

See Also:
Constant Field Values

ECCENTRIC_LONGITUDE_ARGUMENT

@Deprecated
public static final int ECCENTRIC_LONGITUDE_ARGUMENT
Deprecated. as of 6.0 replaced by PositionAngle
Identifier for eccentric latitude argument.

See Also:
Constant Field Values

TRUE_LONGITUDE_ARGUMENT

@Deprecated
public static final int TRUE_LONGITUDE_ARGUMENT
Deprecated. as of 6.0 replaced by PositionAngle
Identifier for true latitude argument.

See Also:
Constant Field Values
Constructor Detail

CircularOrbit

public CircularOrbit(IOrbitalParameters parameters,
                     Frame frame,
                     AbsoluteDate date)
Creates a new instance.

Parameters:
parameters - orbital parameters
frame - the frame in which the parameters are defined (must be a pseudo-inertial frame)
date - date of the orbital parameters

CircularOrbit

public CircularOrbit(double a,
                     double ex,
                     double ey,
                     double i,
                     double raan,
                     double alpha,
                     PositionAngle type,
                     Frame frame,
                     AbsoluteDate date,
                     double mu)
              throws IllegalArgumentException
Creates a new instance.

Parameters:
a - semi-major axis (m)
ex - e cos(ω), first component of circular eccentricity vector
ey - e sin(ω), second component of circular eccentricity vector
i - inclination (rad)
raan - right ascension of ascending node (Ω, rad)
alpha - an + ω, mean, eccentric or true latitude argument (rad)
type - type of latitude argument
frame - the frame in which are defined the parameters
date - date of the orbital parameters
mu - central attraction coefficient (m3/s2)
Throws:
IllegalArgumentException - if eccentricity is equal to 1 or larger

CircularOrbit

@Deprecated
public CircularOrbit(double a,
                                double ex,
                                double ey,
                                double i,
                                double raan,
                                double alpha,
                                int type,
                                Frame frame,
                                AbsoluteDate date,
                                double mu)
              throws IllegalArgumentException
Deprecated. as of 6.0 replaced by CircularOrbit(double, double, double, double, double, double, PositionAngle, Frame, AbsoluteDate, double)

Creates a new instance.

Parameters:
a - semi-major axis (m)
ex - e cos(ω), first component of circular eccentricity vector
ey - e sin(ω), second component of circular eccentricity vector
i - inclination (rad)
raan - right ascension of ascending node (Ω, rad)
alpha - an + ω, mean, eccentric or true latitude argument (rad)
type - type of latitude argument, must be one of MEAN_LONGITUDE_ARGUMENT, ECCENTRIC_LONGITUDE_ARGUMENT or TRUE_LONGITUDE_ARGUMENT
frame - the frame in which are defined the parameters
date - date of the orbital parameters
mu - central attraction coefficient (m3/s2)
Throws:
IllegalArgumentException - if the latitude argument type is not one of MEAN_LONGITUDE_ARGUMENT, ECCENTRIC_LONGITUDE_ARGUMENT or TRUE_LONGITUDE_ARGUMENT
IllegalArgumentException - if eccentricity is equal to 1 or larger
See Also:
MEAN_LONGITUDE_ARGUMENT, ECCENTRIC_LONGITUDE_ARGUMENT, TRUE_LONGITUDE_ARGUMENT

CircularOrbit

public CircularOrbit(PVCoordinates pvCoordinates,
                     Frame frame,
                     AbsoluteDate date,
                     double mu)
Constructor from cartesian parameters.

Parameters:
pvCoordinates - the PVCoordinates in inertial frame
frame - the frame in which are defined the PVCoordinates
date - date of the orbital parameters
mu - central attraction coefficient (m3/s2)

CircularOrbit

public CircularOrbit(Orbit op)
Constructor from any kind of orbital parameters.

Parameters:
op - orbital parameters to copy
Method Detail

getParameters

public IOrbitalParameters getParameters()
Get underlying orbital parameters.

Specified by:
getParameters in class Orbit
Returns:
orbital parameters

getCircularParameters

public CircularParameters getCircularParameters()
Getter for underlying circular parameters.

Returns:
circular parameters

getType

public OrbitType getType()
Get the orbit type.

Specified by:
getType in class Orbit
Returns:
orbit type

getA

public double getA()
Get the semi-major axis.

Specified by:
getA in class Orbit
Returns:
semi-major axis (m)

getEquinoctialEx

public double getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.

Specified by:
getEquinoctialEx in class Orbit
Returns:
e cos(ω + Ω), first component of the eccentricity vector

getEquinoctialEy

public double getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.

Specified by:
getEquinoctialEy in class Orbit
Returns:
e sin(ω + Ω), second component of the eccentricity vector

getCircularEx

public double getCircularEx()
Get the first component of the circular eccentricity vector.

Returns:
ex = e cos(ω), first component of the circular eccentricity vector

getCircularEy

public double getCircularEy()
Get the second component of the circular eccentricity vector.

Returns:
ey = e sin(ω), second component of the circular eccentricity vector

getHx

public double getHx()
Get the first component of the inclination vector.

Specified by:
getHx in class Orbit
Returns:
first component of the inclination vector.

getHy

public double getHy()
Get the second component of the inclination vector.

Specified by:
getHy in class Orbit
Returns:
second component of the inclination vector.

getAlphaV

public double getAlphaV()
Get the true latitude argument.

Returns:
v + ω true latitude argument (rad)

getAlpha

public double getAlpha(PositionAngle type)
Get the latitude argument.

Parameters:
type - type of the angle
Returns:
latitude argument (rad)

getAlphaE

public double getAlphaE()
Get the eccentric latitude argument.

Returns:
E + ω eccentric latitude argument (rad)

getAlphaM

public double getAlphaM()
Get the mean latitude argument.

Returns:
M + ω mean latitude argument (rad)

getE

public double getE()
Get the eccentricity.

Specified by:
getE in class Orbit
Returns:
eccentricity

getI

public double getI()
Get the inclination.

Specified by:
getI in class Orbit
Returns:
inclination (rad)

getRightAscensionOfAscendingNode

public double getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.

Returns:
right ascension of the ascending node (rad)

getLv

public double getLv()
Get the true latitude argument.

Specified by:
getLv in class Orbit
Returns:
true latitude argument (rad)

getLE

public double getLE()
Get the eccentric latitude argument.

Specified by:
getLE in class Orbit
Returns:
eccentric latitude argument.(rad)

getLM

public double getLM()
Get the mean latitude argument.

Specified by:
getLM in class Orbit
Returns:
mean latitude argument.(rad)

initPVCoordinates

protected PVCoordinates initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.

Specified by:
initPVCoordinates in class Orbit
Returns:
computed position/velocity coordinates

orbitShiftedBy

protected CircularOrbit orbitShiftedBy(double dt)
Get a time-shifted orbit.

The orbit can be slightly shifted to close dates. This shift is based on a simple keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.

Specified by:
orbitShiftedBy in class Orbit
Parameters:
dt - time shift in seconds
Returns:
a new orbit, shifted with respect to the instance (which is immutable)

interpolate

public CircularOrbit interpolate(AbsoluteDate date,
                                 Collection<Orbit> sample)
Get an interpolated instance.

Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.

The interpolated instance is created by polynomial Hermite interpolation on circular elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).

Parameters:
date - interpolation date
sample - sample points on which interpolation should be done
Returns:
a new instance, interpolated at specified date

computeJacobianMeanWrtCartesian

protected double[][] computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.

Element jacobian[i][j] is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.

Specified by:
computeJacobianMeanWrtCartesian in class Orbit
Returns:
6x6 Jacobian matrix
See Also:
Orbit.computeJacobianEccentricWrtCartesian(), Orbit.computeJacobianTrueWrtCartesian()

computeJacobianEccentricWrtCartesian

protected double[][] computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.

Element jacobian[i][j] is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.

Specified by:
computeJacobianEccentricWrtCartesian in class Orbit
Returns:
6x6 Jacobian matrix
See Also:
Orbit.computeJacobianMeanWrtCartesian(), Orbit.computeJacobianTrueWrtCartesian()

computeJacobianTrueWrtCartesian

protected double[][] computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.

Element jacobian[i][j] is the derivative of parameter i of the orbit with respect to Cartesian coordinate j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian coordinates x, y, z, xDot, yDot and zDot.

Specified by:
computeJacobianTrueWrtCartesian in class Orbit
Returns:
6x6 Jacobian matrix
See Also:
Orbit.computeJacobianMeanWrtCartesian(), Orbit.computeJacobianEccentricWrtCartesian()

orbitAddKeplerContribution

protected void orbitAddKeplerContribution(PositionAngle type,
                                          double gm,
                                          double[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives

This method is used by numerical propagators to evaluate the part of Keplerrian motion to evolution of the orbital state.

Specified by:
orbitAddKeplerContribution in class Orbit
Parameters:
type - type of the position angle in the state
gm - attraction coefficient to use
pDot - array containing orbital state derivatives to update (the Keplerian part must be added to the array components, as the array may already contain some non-zero elements corresponding to non-Keplerian parts)

toString

public String toString()
Returns a string representation of this Orbit object.

Overrides:
toString in class Object
Returns:
a string representation of this object


Copyright © 2017 CNES. All Rights Reserved.