public final class QuaternionPolynomialSegment extends Object implements Serializable
| Modifier and Type | Method and Description |
|---|---|
Rotation |
getOrientation(AbsoluteDate date)
Get the orientation from the quaternion polynomials at a given date.
|
double[] |
getQ0Coefficients() |
double[] |
getQ1Coefficients() |
double[] |
getQ2Coefficients() |
double[] |
getQ3Coefficients() |
AbsoluteDateInterval |
getTimeInterval()
Get the time interval of the guidance profile segment.
|
public QuaternionPolynomialSegment(PolynomialFunctionLagrangeForm q0, PolynomialFunctionLagrangeForm q1, PolynomialFunctionLagrangeForm q2, PolynomialFunctionLagrangeForm q3, AbsoluteDate date0, AbsoluteDateInterval timeInterval, boolean needsNormalizationIn)
Real time is used (not reduced time).
q0 - the polynomial function representing the q0 quaternion componentq1 - the polynomial function representing the q1 quaternion componentq2 - the polynomial function representing the q2 quaternion componentq3 - the polynomial function representing the q3 quaternion componentdate0 - the date zero of the polynomial functionstimeInterval - the time interval of the segmentneedsNormalizationIn - true if the quaternion polynomials need normalizationpublic QuaternionPolynomialSegment(PolynomialFunction q0, PolynomialFunction q1, PolynomialFunction q2, PolynomialFunction q3, AbsoluteDate date0, AbsoluteDateInterval timeInterval, boolean needsNormalizationIn)
Real time is used (not reduced time).
q0 - the polynomial function representing the q0 quaternion componentq1 - the polynomial function representing the q1 quaternion componentq2 - the polynomial function representing the q2 quaternion componentq3 - the polynomial function representing the q3 quaternion componentdate0 - the date zero of the polynomial functionstimeInterval - the time interval of the segmentneedsNormalizationIn - true if the quaternion polynomials need normalizationpublic QuaternionPolynomialSegment(PolynomialFunctionLagrangeForm q0, PolynomialFunctionLagrangeForm q1, PolynomialFunctionLagrangeForm q2, PolynomialFunctionLagrangeForm q3, AbsoluteDateInterval timeInterval, boolean needsNormalizationIn)
q0 - the polynomial function representing the q0 quaternion componentq1 - the polynomial function representing the q1 quaternion componentq2 - the polynomial function representing the q2 quaternion componentq3 - the polynomial function representing the q3 quaternion componenttimeInterval - the time interval of the segmentneedsNormalizationIn - true if the quaternion polynomials need normalizationpublic QuaternionPolynomialSegment(PolynomialFunction q0, PolynomialFunction q1, PolynomialFunction q2, PolynomialFunction q3, AbsoluteDateInterval timeInterval, boolean needsNormalizationIn)
q0 - the polynomial function representing the q0 quaternion componentq1 - the polynomial function representing the q1 quaternion componentq2 - the polynomial function representing the q2 quaternion componentq3 - the polynomial function representing the q3 quaternion componenttimeInterval - the time interval of the segmentneedsNormalizationIn - true if the quaternion polynomials need normalizationpublic QuaternionPolynomialSegment(PolynomialChebyshevFunction q0, PolynomialChebyshevFunction q1, PolynomialChebyshevFunction q2, PolynomialChebyshevFunction q3, AbsoluteDateInterval timeInterval, boolean needsNormalizationIn)
q0 - the Chebyshev polynomial function representing the q0 quaternion componentq1 - the Chebyshev polynomial function representing the q1 quaternion componentq2 - the Chebyshev polynomial function representing the q2 quaternion componentq3 - the Chebyshev polynomial function representing the q3 quaternion componenttimeInterval - the time interval of the segmentneedsNormalizationIn - true if the quaternion polynomials need normalizationpublic Rotation getOrientation(AbsoluteDate date)
date - the datepublic AbsoluteDateInterval getTimeInterval()
public double[] getQ0Coefficients()
public double[] getQ1Coefficients()
public double[] getQ2Coefficients()
public double[] getQ3Coefficients()
Copyright © 2024 CNES. All rights reserved.