public abstract class BaseSecantSolver extends AbstractUnivariateSolver implements BracketedUnivariateSolver<UnivariateFunction>
Implementation of the Regula Falsi and Illinois
methods is based on the following article: M. Dowell and P. Jarratt,
A modified regula falsi method for computing the root of an
equation, BIT Numerical Mathematics, volume 11, number 2, pages 168-174, Springer, 1971.
Implementation of the Pegasus method is based on the following article: M. Dowell and
P. Jarratt, The "Pegasus" method for computing the root of an equation, BIT Numerical Mathematics, volume
12, number 4, pages 503-508, Springer, 1972.
The Secant method is not a bracketing method, so it is not implemented here.
It has a separate implementation.
| Modifier and Type | Class and Description |
|---|---|
protected static class |
BaseSecantSolver.Method
Secant-based root-finding methods.
|
| Modifier and Type | Field and Description |
|---|---|
protected static double |
DEFAULT_ABSOLUTE_ACCURACY
Default absolute accuracy.
|
| Modifier | Constructor and Description |
|---|---|
protected |
BaseSecantSolver(double absoluteAccuracy,
BaseSecantSolver.Method methodIn)
Construct a solver.
|
protected |
BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
BaseSecantSolver.Method methodIn)
Construct a solver.
|
protected |
BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy,
BaseSecantSolver.Method methodIn)
Construct a solver.
|
| Modifier and Type | Method and Description |
|---|---|
protected double |
doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
Solve for a zero in the given interval.
|
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
Solve for a zero in the given interval, start at
startValue. |
double |
solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
Solve for a zero in the given interval, start at
startValue. |
computeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMaxEvaluations, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, setup, solve, solve, verifyBracketing, verifyInterval, verifySequence, verifySequenceStrictclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMaxEvaluations, getRelativeAccuracy, solve, solveprotected static final double DEFAULT_ABSOLUTE_ACCURACY
protected BaseSecantSolver(double absoluteAccuracy,
BaseSecantSolver.Method methodIn)
absoluteAccuracy - Absolute accuracy.methodIn - Secant-based root-finding method to use.protected BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
BaseSecantSolver.Method methodIn)
relativeAccuracy - Relative accuracy.absoluteAccuracy - Absolute accuracy.methodIn - Secant-based root-finding method to use.protected BaseSecantSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy,
BaseSecantSolver.Method methodIn)
relativeAccuracy - Maximum relative error.absoluteAccuracy - Maximum absolute error.functionValueAccuracy - Maximum function value error.methodIn - Secant-based root-finding method to usepublic double solve(int maxEval,
UnivariateFunction f,
double min,
double max,
AllowedSolution allowedSolution)
solve in interface BracketedUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval.allowedSolution - The kind of solutions that the root-finding algorithm may
accept as solutions.public double solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue,
AllowedSolution allowedSolution)
startValue.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve in interface BracketedUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval.startValue - Start value to use.allowedSolution - The kind of solutions that the root-finding algorithm may
accept as solutions.public double solve(int maxEval,
UnivariateFunction f,
double min,
double max,
double startValue)
startValue.
A solver may require that the interval brackets a single zero root.
Solvers that do require bracketing should be able to handle the case
where one of the endpoints is itself a root.solve in interface BaseUnivariateSolver<UnivariateFunction>solve in class BaseAbstractUnivariateSolver<UnivariateFunction>maxEval - Maximum number of evaluations.f - Function to solve.min - Lower bound for the interval.max - Upper bound for the interval.startValue - Start value to use.protected final double doSolve()
doSolve in class BaseAbstractUnivariateSolver<UnivariateFunction>ConvergenceException - if the algorithm failed due to finite
precision.Copyright © 2024 CNES. All rights reserved.