public class MultivariateNormalDistribution extends AbstractMultivariateRealDistribution
random| Constructor and Description |
|---|
MultivariateNormalDistribution(double[] meansIn,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and
covariance matrix.
|
MultivariateNormalDistribution(RandomGenerator rng,
double[] meansIn,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and
covariance matrix.
|
| Modifier and Type | Method and Description |
|---|---|
double |
density(double[] vals)
Returns the probability density function (PDF) of this distribution
evaluated at the specified point
x. |
RealMatrix |
getCovariances()
Gets the covariance matrix.
|
double[] |
getMeans()
Gets the mean vector.
|
double[] |
getStandardDeviations()
Gets the square root of each element on the diagonal of the covariance
matrix.
|
double[] |
sample()
Generates a random value vector sampled from this distribution.
|
getDimension, reseedRandomGenerator, samplepublic MultivariateNormalDistribution(double[] meansIn,
double[][] covariances)
meansIn - Vector of means.covariances - Covariance matrix.DimensionMismatchException - if the arrays length are
inconsistent.SingularMatrixException - if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.NonPositiveDefiniteMatrixException - if any of the eigenvalues is
negative.public MultivariateNormalDistribution(RandomGenerator rng, double[] meansIn, double[][] covariances)
rng - Random Number Generator.meansIn - Vector of means.covariances - Covariance matrix.DimensionMismatchException - if the arrays length are
inconsistent.SingularMatrixException - if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.NonPositiveDefiniteMatrixException - if any of the eigenvalues is
negative.public double[] getMeans()
public RealMatrix getCovariances()
public double density(double[] vals)
x. In general, the PDF is the
derivative of the cumulative distribution function. If the derivative
does not exist at x, then an appropriate replacement should be
returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or
the limit inferior or limit superior of the difference quotient.vals - Point at which the PDF is evaluated.x.public double[] getStandardDeviations()
public double[] sample()
sample in interface MultivariateRealDistributionsample in class AbstractMultivariateRealDistributionCopyright © 2024 CNES. All rights reserved.