S - Type of the embedding space.T - Type of the embedded sub-space.public interface Embedding<S extends Space,T extends Space>
Sub-spaces are the lower dimensions subsets of a n-dimensions space. The (n-1)-dimension sub-spaces are specific
sub-spaces known as hyperplanes. This interface can be used regardless of the dimensions
differences. As an example, Line in 3D implements
Embedding<Vector3D, {link
fr.cnes.sirius.patrius.math.geometry.euclidean.oned.Vector1D Vector1D>, i.e. it maps directly dimensions 3 and 1.
In the 3D euclidean space, hyperplanes are 2D planes, and the 1D sub-spaces are lines.
Hyperplane| Modifier and Type | Method and Description |
|---|---|
Vector<S> |
toSpace(Vector<T> point)
Transform a sub-space point into a space point.
|
Vector<T> |
toSubSpace(Vector<S> point)
Transform a space point into a sub-space point.
|
Vector<T> toSubSpace(Vector<S> point)
point - n-dimension point of the spacetoSpace(fr.cnes.sirius.patrius.math.geometry.Vector<T>)Vector<S> toSpace(Vector<T> point)
point - (n-1)-dimension point of the sub-spacetoSubSpace(fr.cnes.sirius.patrius.math.geometry.Vector<S>)Copyright © 2024 CNES. All rights reserved.