public class WeibullDistribution extends AbstractRealDistribution
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy.
|
random, SOLVER_DEFAULT_ABSOLUTE_ACCURACY| Constructor and Description |
|---|
WeibullDistribution(double alpha,
double beta)
Create a Weibull distribution with the given shape and scale and a
location equal to zero.
|
WeibullDistribution(double alpha,
double beta,
double inverseCumAccuracy)
Create a Weibull distribution with the given shape, scale and inverse
cumulative probability accuracy and a location equal to zero.
|
WeibullDistribution(RandomGenerator rng,
double alpha,
double beta,
double inverseCumAccuracy)
Creates a Weibull distribution.
|
| Modifier and Type | Method and Description |
|---|---|
protected double |
calculateNumericalMean()
used by
getNumericalMean() |
protected double |
calculateNumericalVariance()
used by
getNumericalVariance() |
double |
cumulativeProbability(double x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x). |
double |
density(double x)
Returns the probability density function (PDF) of this distribution
evaluated at the specified point
x. |
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
double |
getScale()
Access the scale parameter,
beta. |
double |
getShape()
Access the shape parameter,
alpha. |
protected double |
getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate
inverse cumulative probabilities.
|
double |
getSupportLowerBound()
Access the lower bound of the support.
|
double |
getSupportUpperBound()
Access the upper bound of the support.
|
double |
inverseCumulativeProbability(double p)
The default implementation returns
RealDistribution.getSupportLowerBound() for p = 0,
RealDistribution.getSupportUpperBound() for p = 1. |
boolean |
isSupportConnected()
Use this method to get information about whether the support is connected,
i.e. whether all values between the lower and upper bound of the support
are included in the support.
|
boolean |
isSupportLowerBoundInclusive()
Returns true if support contains lower bound.
|
boolean |
isSupportUpperBoundInclusive()
Returns true if support contains upper bound.
|
probability, probability, reseedRandomGenerator, sample, samplepublic static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public WeibullDistribution(double alpha,
double beta)
alpha - Shape parameter.beta - Scale parameter.NotStrictlyPositiveException - if alpha <= 0 or beta <= 0.public WeibullDistribution(double alpha,
double beta,
double inverseCumAccuracy)
alpha - Shape parameter.beta - Scale parameter.inverseCumAccuracy - Maximum absolute error in inverse
cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY).NotStrictlyPositiveException - if alpha <= 0 or beta <= 0.public WeibullDistribution(RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy)
rng - Random number generator.alpha - Shape parameter.beta - Scale parameter.inverseCumAccuracy - Maximum absolute error in inverse
cumulative probability estimates
(defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY).NotStrictlyPositiveException - if alpha <= 0 or beta <= 0.public double getShape()
alpha.alpha.public double getScale()
beta.beta.public double density(double x)
x. In general, the PDF is
the derivative of the CDF.
If the derivative does not exist at x, then an appropriate
replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior
or limit superior of the
difference quotient.x - the point at which the PDF is evaluatedxpublic double cumulativeProbability(double x)
X whose values are distributed according
to this distribution, this method returns P(X <= x). In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.x - the point at which the CDF is evaluatedxpublic double inverseCumulativeProbability(double p)
RealDistribution.getSupportLowerBound() for p = 0,RealDistribution.getSupportUpperBound() for p = 1.0 when p == 0 and Double.POSITIVE_INFINITY when p == 1.inverseCumulativeProbability in interface RealDistributioninverseCumulativeProbability in class AbstractRealDistributionp - the cumulative probabilityp-quantile of this distribution
(largest 0-quantile for p = 0)protected double getSolverAbsoluteAccuracy()
getSolverAbsoluteAccuracy in class AbstractRealDistributionpublic double getNumericalMean()
scale * Gamma(1 + (1 / shape)), where Gamma() is the Gamma-function.Double.NaN if it is not definedprotected double calculateNumericalMean()
getNumericalMean()public double getNumericalVariance()
scale^2 * Gamma(1 + (2 / shape)) - mean^2 where Gamma() is the Gamma-function.Double.POSITIVE_INFINITY as
for certain cases in TDistribution) or Double.NaN if it
is not definedprotected double calculateNumericalVariance()
getNumericalVariance()public double getSupportLowerBound()
inverseCumulativeProbability(0). In other words, this
method must return
inf {x in R | P(X <= x) > 0}.
public double getSupportUpperBound()
inverseCumulativeProbability(1). In other words, this
method must return
inf {x in R | P(X <= x) = 1}.
Double.POSITIVE_INFINITY)public boolean isSupportLowerBoundInclusive()
public boolean isSupportUpperBoundInclusive()
public boolean isSupportConnected()
trueCopyright © 2025 CNES. All rights reserved.