public class NthOrderPolynomialFunction extends LinearCombinationFunction
This function is serializable.
functions, PARAMETER_PREFIX_NAME| Constructor and Description |
|---|
NthOrderPolynomialFunction(AbsoluteDate t0,
double... values)
Constructor of a linear polynomial function of order N, defined such as:
f = a0 + a1 * (t - t0) + a2 * (t - t0)^2 + ...
|
NthOrderPolynomialFunction(AbsoluteDate t0,
int n)
Constructor of a linear polynomial function of order N, defined such as:
f = a0 + a1 * (t - t0) + a2 * (t - t0)^2 + ...
|
NthOrderPolynomialFunction(AbsoluteDate t0,
Parameter... params)
Constructor of a linear polynomial function of order N, defined such as:
f = a0 + a1 * (t - t0) + a2 * (t - t0)^2 + ...
|
| Modifier and Type | Method and Description |
|---|---|
ArrayList<Parameter> |
getParameters()
Return the function N parameters in this following order : a0, a1, a2,
...
|
String |
toString()
Getter for a String representation of this function.
|
derivativeValue, isDifferentiableBy, supportsParameter, valuepublic NthOrderPolynomialFunction(AbsoluteDate t0, int n)
Note: For instance, a linear polynomial function of order 3 (N = 3) will have 4 coefficients/parameters: a0, a1, a2, a3.
t0 - Initial daten - Expected polynomial function orderpublic NthOrderPolynomialFunction(AbsoluteDate t0, double... values)
The linear polynomial function order depends of how many coefficients are given to the constructor (N coefficients = polynomial of order N).
t0 - Initial datevalues - N order coefficients valuesNullArgumentException - if t0 is nullpublic NthOrderPolynomialFunction(AbsoluteDate t0, Parameter... params)
The linear polynomial function order depends of how many parameters are given to the constructor (N parameters = polynomial of order N).
t0 - Initial dateparams - N order coefficients parametersNullArgumentException - if t0 or any params is nullpublic ArrayList<Parameter> getParameters()
The list is returned in a shallow copy.
getParameters in interface IParameterizablegetParameters in class LinearCombinationFunctionCopyright © 2025 CNES. All rights reserved.