public class LaguerreSolver extends AbstractPolynomialSolver
A First Course in Numerical Analysis ISBN 048641454X, chapter 8.Laguerre's method is global in the sense that it can start with any initial approximation and be able to solve all roots from that point. The algorithm requires a bracketing condition.
| Constructor and Description |
|---|
LaguerreSolver()
Construct a solver with default accuracy (1e-6).
|
LaguerreSolver(double absoluteAccuracy)
Construct a solver.
|
LaguerreSolver(double relativeAccuracy,
double absoluteAccuracy)
Construct a solver.
|
LaguerreSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy)
Construct a solver.
|
| Modifier and Type | Method and Description |
|---|---|
double |
doSolve()
Method for implementing actual optimization algorithms in derived
classes.
|
Complex[] |
solveAllComplex(double[] coefficients,
double initial)
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.
|
Complex[] |
solveAllComplex(double[] coefficients,
double[] initials,
int[] maxEvals)
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.
|
Complex[] |
solveAllComplex(double[] coefficients,
double initial,
int maxEval)
Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.
|
Complex |
solveComplex(double[] coefficients,
double initial)
Find a complex root for the polynomial with the given coefficients,
starting from the given initial value.
|
Complex |
solveComplex(double[] coefficients,
double[] initials,
int[] maxEvals)
Find a complex root for the polynomial with the given coefficients,
starting from the given initial value.
|
Complex |
solveComplex(double[] coefficients,
double initial,
int maxEval)
Find a complex root for the polynomial with the given coefficients,
starting from the given initial value.
|
getCoefficients, setupcomputeObjectiveValue, getAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMax, getMaxEvaluations, getMin, getRelativeAccuracy, getStartValue, incrementEvaluationCount, isBracketing, isSequence, solve, solve, solve, verifyBracketing, verifyInterval, verifySequence, verifySequenceStrictclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetAbsoluteAccuracy, getEvaluations, getFunctionValueAccuracy, getMaxEvaluations, getRelativeAccuracy, solve, solve, solvepublic LaguerreSolver()
public LaguerreSolver(double absoluteAccuracy)
absoluteAccuracy - Absolute accuracypublic LaguerreSolver(double relativeAccuracy,
double absoluteAccuracy)
relativeAccuracy - Relative accuracyabsoluteAccuracy - Absolute accuracypublic LaguerreSolver(double relativeAccuracy,
double absoluteAccuracy,
double functionValueAccuracy)
relativeAccuracy - Relative accuracyabsoluteAccuracy - Absolute accuracyfunctionValueAccuracy - Function value accuracypublic double doSolve()
doSolve in class BaseAbstractUnivariateSolver<PolynomialFunction>public Complex[] solveAllComplex(double[] coefficients, double initial)
BaseUnivariateSolver.coefficients - Polynomial coefficientsinitial - Start value.TooManyEvaluationsException - if the maximum number of evaluations is exceededNullArgumentException - if the coefficients is nullNoDataException - if the coefficients array is emptyTooManyEvaluationsException - if too many evaluations are requiredpublic Complex[] solveAllComplex(double[] coefficients, double initial, int maxEval)
BaseUnivariateSolver.coefficients - Polynomial coefficientsinitial - Start value.maxEval - maximum number of iterationsTooManyEvaluationsException - if the maximum number of evaluations is exceededNullArgumentException - if the coefficients is nullNoDataException - if the coefficients array is emptyTooManyEvaluationsException - if too many evaluations are requiredpublic Complex[] solveAllComplex(double[] coefficients, double[] initials, int[] maxEvals)
BaseUnivariateSolver.coefficients - Polynomial coefficientsinitials - Array of possible start valuesmaxEvals - Array of maximum number of iterations for each start valueDimensionMismatchException - if the start values array and the maximum number of iterations array aren't the same lengthTooManyEvaluationsException - if the maximum number of evaluations is exceededNullArgumentException - if the coefficients is nullNoDataException - if the coefficients array is emptyTooManyEvaluationsException - if too many evaluations are requiredpublic Complex solveComplex(double[] coefficients, double initial)
BaseUnivariateSolver.coefficients - Polynomial coefficientsinitial - Start valueNullArgumentException - if the coefficients is nullNoDataException - if the coefficients array is emptyTooManyEvaluationsException - if too many evaluations are requiredpublic Complex solveComplex(double[] coefficients, double initial, int maxEval)
BaseUnivariateSolver.coefficients - Polynomial coefficientsinitial - Start value.maxEval - Maximum number of iterationsTooManyEvaluationsException - if the maximum number of evaluations is exceededNullArgumentException - if the coefficients is nullNoDataException - if the coefficients array is emptyTooManyEvaluationsException - if too many evaluations are requiredpublic Complex solveComplex(double[] coefficients, double[] initials, int[] maxEvals)
BaseUnivariateSolver.coefficients - Polynomial coefficientsinitials - Array of possible start values.maxEvals - Array of maximum number of iterations for each start valueDimensionMismatchException - if the start values array and the maximum number of iterations array aren't the same lengthTooManyEvaluationsException - if the maximum number of evaluations is exceededNullArgumentException - if the coefficients is nullNoDataException - if the coefficients array is emptyTooManyEvaluationsException - if too many evaluations are requiredCopyright © 2025 CNES. All rights reserved.