NumericalPropagationWithLiftAndDragAndMSISE2000 : Différence entre versions
De Wiki
(Page créée avec « <syntaxhighlight lang="java"> public class NumericalPropagationWithLiftAndDragAndMSISE2000 { public static void main(String[] args) throws PatriusException, IOExcepti... ») |
|||
(Une révision intermédiaire par le même utilisateur non affichée) | |||
Ligne 80 : | Ligne 80 : | ||
final Frame ITRF = FramesFactory.getITRF(); | final Frame ITRF = FramesFactory.getITRF(); | ||
final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; | final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; | ||
− | final | + | final BodyShape EARTH = new OneAxisEllipsoid(AE, Constants.WGS84_EARTH_FLATTENING, ITRF, "EARTH"); |
// Adding atmospheric forces using MSISE2000 model | // Adding atmospheric forces using MSISE2000 model |
Version actuelle en date du 15 novembre 2022 à 08:40
public class NumericalPropagationWithLiftAndDragAndMSISE2000 { public static void main(String[] args) throws PatriusException, IOException, ParseException { // Patrius Dataset initialization (needed for example to get the UTC time PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 6600.e+3; final double exc = 0.; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(0.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); // Mass model using an Assembly final AssemblyBuilder builder = new AssemblyBuilder(); // Initial mass (mandatory to take into account mass for atmospheric force computation) final double dryMass = 100.; builder.addMainPart("MAIN"); builder.addProperty(new MassProperty(dryMass), "MAIN"); //SPECIFIC // Adding the AeroGSphere property for drag only final double cd = 2.0; final double cl = 0.2; final double sref = 10.; //builder.addProperty(new AeroGlobalProperty(cd, cl, new ConstantFunction(sref)), "MAIN"); builder.addProperty(new AeroGlobalProperty(cd, cl, new Sphere(Vector3D.ZERO, FastMath.sqrt(sref/FastMath.PI))), "MAIN"); final UpdatableFrame mainFrame = new UpdatableFrame(GCRF, Transform.IDENTITY, "mainPartFrame"); builder.initMainPartFrame(mainFrame); //SPECIFIC final Assembly assembly = builder.returnAssembly(); final MassProvider mm = new MassModel(assembly); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit, mm); // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Adding additional state (change name add to set for V3.3) propagator.setMassProviderEquation(mm); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Adding an attitude law final AttitudeLaw attitudeLaw = new LofOffset(LOFType.LVLH, RotationOrder.ZYX, 0., 0., 0.); propagator.setAttitudeProvider(attitudeLaw); // Definition of the Earth ellipsoid for later atmospheric density computation final Frame ITRF = FramesFactory.getITRF(); final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; final BodyShape EARTH = new OneAxisEllipsoid(AE, Constants.WGS84_EARTH_FLATTENING, ITRF, "EARTH"); // Adding atmospheric forces using MSISE2000 model SolarActivityDataProvider solarProvider = new ConstantSolarActivity(100, 15); final MSISE2000InputParameters data = new ClassicalMSISE2000SolarData(solarProvider); CelestialBody sunBody = CelestialBodyFactory.getSun(); final Atmosphere atmosphere = new MSISE2000(data, EARTH, sunBody); final DragLiftModel dragLiftModel = new DragLiftModel(assembly); final ForceModel atm = new DragForce(atmosphere, dragLiftModel); propagator.addForceModel(atm); //SPECIFIC // Propagating 5 periods final double dt = 5.*iniOrbit.getKeplerianPeriod(); final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Printing new date and semi major axis System.out.println(); System.out.println("Initial semi major axis = "+iniOrbit.getA()/1000.+" km"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("Final semi major axis = "+finalOrbit.getA()/1000.+" km"); // Printing mass System.out.println(); System.out.println("Mass = "+finalState.getMass("MAIN")+" kg"); } }