NumericalPropagationWithManeuverSequence : Différence entre versions
De Wiki
(Page créée avec « <syntaxhighlight lang="java"> public class NumericalPropagationWithManeuverSequence { public static void main(String[] args) throws PatriusException {... ») |
|||
Ligne 42 : | Ligne 42 : | ||
// Tank part (ergols mass) | // Tank part (ergols mass) | ||
final double ergolsMass = 100.; | final double ergolsMass = 100.; | ||
− | final TankProperty tank = new TankProperty( | + | final TankProperty tank = new TankProperty(ergolsMass); |
builder.addPart("TANK", "MAIN", Transform.IDENTITY); | builder.addPart("TANK", "MAIN", Transform.IDENTITY); | ||
builder.addProperty(tank, "TANK"); | builder.addProperty(tank, "TANK"); | ||
Ligne 49 : | Ligne 49 : | ||
final double isp = 300.; | final double isp = 300.; | ||
final double thrust = 400.; | final double thrust = 400.; | ||
− | final PropulsiveProperty prop = new PropulsiveProperty( | + | final PropulsiveProperty prop = new PropulsiveProperty(thrust, isp); |
builder.addPart("PROP", "MAIN", Transform.IDENTITY); | builder.addPart("PROP", "MAIN", Transform.IDENTITY); |
Version actuelle en date du 28 juin 2018 à 08:29
public class NumericalPropagationWithManeuverSequence { public static void main(String[] args) throws PatriusException { // Patrius Dataset initialization (needed for example to get the UTC time) PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 7200.e+3; final double exc = 0.01; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(0.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); //SPECIFIC // Creating a mass model (see also specific example) final AssemblyBuilder builder = new AssemblyBuilder(); // Main part final double iniMass = 900.; builder.addMainPart("MAIN"); builder.addProperty(new MassProperty(iniMass), "MAIN"); // Tank part (ergols mass) final double ergolsMass = 100.; final TankProperty tank = new TankProperty(ergolsMass); builder.addPart("TANK", "MAIN", Transform.IDENTITY); builder.addProperty(tank, "TANK"); // Engine part final double isp = 300.; final double thrust = 400.; final PropulsiveProperty prop = new PropulsiveProperty(thrust, isp); builder.addPart("PROP", "MAIN", Transform.IDENTITY); builder.addProperty(prop, "PROP"); final Assembly assembly = builder.returnAssembly(); final MassProvider mm = new MassModel(assembly); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit, mm); //SPECIFIC // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Event corresponding to the criteria to trigger the impulsive maneuver final EventDetector event = new DateDetector(date); // Creation of the impulsive maneuver final Vector3D deltaV = new Vector3D(20., 0., 0.); final ImpulseManeuver imp = new ImpulseManeuver(event, deltaV, prop, mm, tank, LOFType.TNW); // Duration of the maneuver to reach the initial semi major axis final double duration = 51.03781404091; // Creation of the continuous thrust maneuver final AbsoluteDate startDate = date.shiftedBy(0.5*(iniOrbit.getKeplerianPeriod()-duration)); final EventDetector eventStart = new DateDetector(startDate); final EventDetector eventEnd = new DateDetector(startDate.shiftedBy(duration)); final Vector3D direction = new Vector3D(-1., 0., 0.); final ContinuousThrustManeuver man = new ContinuousThrustManeuver(eventStart, eventEnd, prop, direction, mm, tank); // Creation of the sequence of maneuver ManeuversSequence seq = new ManeuversSequence(0., 0.); seq.add(imp); seq.add(man); // Adding the maneuver sequence to the propagator seq.applyTo(propagator); // Adding additional state (change name add to set for V3.3) propagator.setMassProviderEquation(mm); // Adding an attitude law (or attitude sequence : mandatory) final AttitudeLaw attitudeLaw = new LofOffset(LOFType.TNW, RotationOrder.ZYX, 0., 0., 0.); propagator.setAttitudeProvider(attitudeLaw); //SPECIFIC // Propagating 100s final double dt = iniOrbit.getKeplerianPeriod(); final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Printing new date and semi major axis System.out.println(); System.out.println("Initial semi major axis = "+iniOrbit.getA()/1000.+" km"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("Final semi major axis = "+finalOrbit.getA()/1000.+" km"); // Printing mass System.out.println(); System.out.println("Dry Mass = "+finalState.getMass("MAIN")+" kg"); System.out.println("Ergols Mass = "+finalState.getMass("TANK")+" kg"); } }