NumericalPropagationWithImpulsiveManeuver 4.4 : Différence entre versions
De Wiki
(Page créée avec « <syntaxhighlight lang="java"> ublic class NumericalPropagationWithImpulsiveManeuver { public static void main(String[] args) throws PatriusException, IOException, URI... ») |
(Aucune différence)
|
Version actuelle en date du 3 octobre 2019 à 13:01
ublic class NumericalPropagationWithImpulsiveManeuver { public static void main(String[] args) throws PatriusException, IOException, URISyntaxException { // Patrius Dataset initialization (needed for example to get the UTC time) PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 7200.e+3; final double exc = 0.01; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(0.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); //SPECIFIC // Creating a mass model (see also specific example) final AssemblyBuilder builder = new AssemblyBuilder(); final double iniMass = 1000.; builder.addMainPart("MAIN"); builder.addProperty(new MassProperty(iniMass), "MAIN"); final Assembly assembly = builder.returnAssembly(); final MassProvider mm = new MassModel(assembly); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit, mm); //SPECIFIC // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Event corresponding to the criteria to trigger the impulsive maneuver final EventDetector event = new DateDetector(date.shiftedBy(10.)); // Creation of the impulsive maneuver final Vector3D deltaV = new Vector3D(20., 0., 0.); final double isp = 300.; final ImpulseManeuver imp = new ImpulseManeuver(event, deltaV, isp, mm, "MAIN", LOFType.TNW); // Adding the impulsive maneuver propagator.addEventDetector(imp); // Adding additional state (change name add to set for V3.3) propagator.setMassProviderEquation(mm); //SPECIFIC // Propagating 100s final double dt = 100.; final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Printing new date and semi major axis System.out.println(); System.out.println("Initial semi major axis = "+iniOrbit.getA()/1000.+" km"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("Final semi major axis = "+finalOrbit.getA()/1000.+" km"); // Printing mass System.out.println(); System.out.println("Mass = "+finalState.getMass("MAIN")+" kg"); } }