NumericalPropagationWithStopEvent : Différence entre versions
De Wiki
Ligne 49 : | Ligne 49 : | ||
final Frame ITRF = FramesFactory.getITRF(); | final Frame ITRF = FramesFactory.getITRF(); | ||
final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; | final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; | ||
− | final BodyShape EARTH = new | + | final BodyShape EARTH = new OneAxisEllipsoid(AE, Constants.WGS84_EARTH_FLATTENING, ITRF, "EARTH"); |
// Adding an altitude stop event | // Adding an altitude stop event |
Version actuelle en date du 15 novembre 2022 à 08:39
public class NumericalPropagationWithStopEvent { public static void main(String[] args) throws PatriusException { // Patrius Dataset initialization (needed for example to get the UTC time PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 7200.e+3; final double exc = 0.02; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(180.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit); // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Definition of the Earth ellipsoid final Frame ITRF = FramesFactory.getITRF(); final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; final BodyShape EARTH = new OneAxisEllipsoid(AE, Constants.WGS84_EARTH_FLATTENING, ITRF, "EARTH"); // Adding an altitude stop event final double endAlt = 750.e+3; final AltitudeDetector stopEvent = new AltitudeDetector(endAlt, EARTH); propagator.addEventDetector(stopEvent); //SPECIFIC // Propagating on one orbital period final double dt = iniOrbit.getKeplerianPeriod(); final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Get geodetic coordinates (altitude, latitude, longitude) final GeodeticPoint iniGeodeticPoint = EARTH.transform(iniOrbit.getPVCoordinates().getPosition(), ITRF, date); final GeodeticPoint finalGeodeticPoint = EARTH.transform(finalOrbit.getPVCoordinates().getPosition(), ITRF, date); System.out.println(); iniOrbit.getPVCoordinates(ITRF); System.out.println("Initial altitude = "+iniGeodeticPoint.getAltitude()/1000.+" km"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("Final altitude = "+finalGeodeticPoint.getAltitude()/1000.+" km"); } }