NumericalpropagationWithDrag : Différence entre versions
De Wiki
(Page créée avec « <syntaxhighlight lang="java"> public class NumericalPropagationWithDrag { public static void main(String[] args) throws PatriusException, IOException, ParseException... ») |
(Aucune différence)
|
Version du 13 février 2018 à 10:27
public class NumericalPropagationWithDrag { public static void main(String[] args) throws PatriusException, IOException, ParseException { // Patrius Dataset initialization (needed for example to get the UTC time) PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 6600.e+3; final double exc = 0.; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(0.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); // Mass model using an Assembly final AssemblyBuilder builder = new AssemblyBuilder(); // Initial mass (mandatory to take into account mass for atmospheric force computation) final double dryMass = 100.; builder.addMainPart("MAIN"); builder.addProperty(new MassProperty(dryMass), "MAIN"); //SPECIFIC // Adding the AeroGSphere property for drag only final double cd = 2.0; final double sref = 10.; builder.addProperty(new AeroSphereProperty(new Parameter("", sref), cd), "MAIN"); //SPECIFIC final Assembly assembly = builder.returnAssembly(); final MassProvider mm = new MassModel(assembly); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit, mm); // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Adding additional state (change name add to set for V3.3) propagator.setMassProviderEquation(mm); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Definition of the Earth ellipsoid for later atmospheric density computation final Frame ITRF = FramesFactory.getITRF(); final double AE = Constants.WGS84_EARTH_EQUATORIAL_RADIUS; final GeometricBodyShape EARTH = new ExtendedOneAxisEllipsoid(AE, Constants.WGS84_EARTH_FLATTENING, ITRF, "EARTH"); // Adding atmospheric forces using US76 model final Atmosphere atmosphere = new US76(EARTH); final AeroModel dragModel = new AeroModel(assembly); final ForceModel atm = new DragForce(atmosphere, dragModel); propagator.addForceModel(atm); //SPECIFIC // Propagating 5 periods final double dt = 5.*iniOrbit.getKeplerianPeriod(); final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Printing new date and semi major axis System.out.println(); System.out.println("Initial semi major axis = "+iniOrbit.getA()/1000.+" km"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("Final semi major axis = "+finalOrbit.getA()/1000.+" km"); // Printing mass System.out.println(); System.out.println("Mass = "+finalState.getMass("MAIN")+" kg"); } }