NumericalPropagationWithContinuousManeuver
De Wiki
Révision de 13 février 2018 à 10:30 par Admin (discussion | contributions) (Page créée avec « <syntaxhighlight lang="java"> public class NumericalPropagationWithContinuousManeuver { public static void main(String[] args) throws PatriusException {... »)
public class NumericalPropagationWithContinuousManeuver { public static void main(String[] args) throws PatriusException { // Patrius Dataset initialization (needed for example to get the UTC time) PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 7200.e+3; final double exc = 0.01; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(0.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); //SPECIFIC // Creating a mass model (see also specific example) final AssemblyBuilder builder = new AssemblyBuilder(); // Main part final double iniMass = 900.; builder.addMainPart("MAIN"); builder.addProperty(new MassProperty(iniMass), "MAIN"); // Tank part (ergols mass) final double ergolsMass = 100.; final TankProperty tank = new TankProperty("TANK", ergolsMass); builder.addPart("TANK", "MAIN", Transform.IDENTITY); builder.addProperty(tank, "TANK"); // Engine part final double isp = 300.; final double thrust = 400.; final PropulsiveProperty prop = new PropulsiveProperty("PROP", thrust, isp); builder.addPart("PROP", "MAIN", Transform.IDENTITY); builder.addProperty(prop, "PROP"); final Assembly assembly = builder.returnAssembly(); final MassProvider mm = new MassModel(assembly); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit, mm); //SPECIFIC // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Duration of the maneuver to get a 20 m/S boost final double G0 = 9.80665; final double duration = G0*isp*iniMass*(1. - FastMath.exp(-20/(G0*isp)))/thrust; // Start and end thrust events final EventDetector eventStart = new DateDetector(date.shiftedBy(10.)); final EventDetector eventEnd = new DateDetector(date.shiftedBy(10.+duration)); // Creation of the continuous thrust maneuver final Vector3D direction = new Vector3D(1., 0., 0.); final ContinuousThrustManeuver man = new ContinuousThrustManeuver(eventStart, eventEnd, prop, direction, mm, tank); // Adding a continuous thrust maneuver propagator.addForceModel(man); // Adding additional state (change name add to set for V3.3) propagator.setMassProviderEquation(mm); // Adding an attitude law (or attitude sequence : mandatory) final AttitudeLaw attitudeLaw = new LofOffset(LOFType.TNW, RotationOrder.ZYX, 0., 0., 0.); propagator.setAttitudeProvider(attitudeLaw); //SPECIFIC // Propagating 100s final double dt = 100.; final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Printing new date and semi major axis System.out.println(); System.out.println("Initial semi major axis = "+iniOrbit.getA()/1000.+" km"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("Final semi major axis = "+finalOrbit.getA()/1000.+" km"); // Printing mass System.out.println(); System.out.println("Dry Mass = "+finalState.getMass("MAIN")+" kg"); System.out.println("Ergols Mass = "+finalState.getMass("TANK")+" kg"); } }