NumericalPropagationWithAttitudeSequence 4.5.1
De Wiki
public class NumericalPropagationWithAttitudeSequence { public static void main(String[] args) throws PatriusException, IOException, URISyntaxException { // Patrius Dataset initialization (needed for example to get the UTC time PatriusDataset.addResourcesFromPatriusDataset() ; // Recovery of the UTC time scale using a "factory" (not to duplicate such unique object) final TimeScale TUC = TimeScalesFactory.getUTC(); // Date of the orbit given in UTC time scale) final AbsoluteDate date = new AbsoluteDate("2010-01-01T12:00:00.000", TUC); // Getting the frame with wich will defined the orbit parameters // As for time scale, we will use also a "factory". final Frame GCRF = FramesFactory.getGCRF(); // Initial orbit final double sma = 7200.e+3; final double exc = 0.01; final double per = sma*(1.-exc); final double apo = sma*(1.+exc); final double inc = FastMath.toRadians(98.); final double pa = FastMath.toRadians(0.); final double raan = FastMath.toRadians(0.); final double anm = FastMath.toRadians(0.); final double MU = Constants.WGS84_EARTH_MU; final ApsisRadiusParameters par = new ApsisRadiusParameters(per, apo, inc, pa, raan, anm, PositionAngle.MEAN, MU); final Orbit iniOrbit = new ApsisOrbit(par, GCRF, date); // We create a spacecratftstate final SpacecraftState iniState = new SpacecraftState(iniOrbit); // Initialization of the Runge Kutta integrator with a 2 s step final double pasRk = 2.; final FirstOrderIntegrator integrator = new ClassicalRungeKuttaIntegrator(pasRk); // Initialization of the propagator final NumericalPropagator propagator = new NumericalPropagator(integrator); propagator.resetInitialState(iniState); // Forcing integration using cartesian equations propagator.setOrbitType(OrbitType.CARTESIAN); //SPECIFIC // Adding attitude sequence final AttitudesSequence seqAtt = new AttitudesSequence(); // Laws to be taken into account in the sequence final AttitudeLaw law1 = new ConstantAttitudeLaw(GCRF, new Rotation(RotationOrder.ZYX, 0., 0., 0.)); final AttitudeLaw law2 = new ConstantAttitudeLaw(GCRF, new Rotation(RotationOrder.ZYX, FastMath.toRadians(45.), FastMath.toRadians(45.), FastMath.toRadians(45.))); // Events that will switch from a law to another final double maxCheck = 10.; final double threshold = 1.e-3; final EventDetector event1 = new AOLDetector(0., PositionAngle.MEAN, GCRF, maxCheck, threshold, Action.RESET_STATE); final EventDetector event2 = new AOLDetector(FastMath.toRadians(180.), PositionAngle.MEAN, GCRF, maxCheck, threshold, Action.RESET_STATE); //Adding switches seqAtt.addSwitchingCondition(law1, event1, true, false, law2); seqAtt.addSwitchingCondition(law2, event2, true, false, law1); propagator.setAttitudeProvider(seqAtt); seqAtt.registerSwitchEvents(propagator); //SPECIFIC // Propagating 100s final double dt = 0.25*iniOrbit.getKeplerianPeriod(); System.out.println(dt); final AbsoluteDate finalDate = date.shiftedBy(dt); final SpacecraftState finalState = propagator.propagate(finalDate); final Orbit finalOrbit = finalState.getOrbit(); // Printing new date and true latitude argument System.out.println(); System.out.println("Initial true latitude argument = "+FastMath.toDegrees(iniOrbit.getLv())+" deg"); System.out.println("New date = "+finalOrbit.getDate().toString(TUC)+" deg"); System.out.println("True latitude argument = "+FastMath.toDegrees(finalOrbit.getLv())+" deg"); // Printing attitude final double psi = finalState.getAttitude().getRotation().getAngles(RotationOrder.ZYX)[0]; final double teta = finalState.getAttitude().getRotation().getAngles(RotationOrder.ZYX)[1]; final double phi = finalState.getAttitude().getRotation().getAngles(RotationOrder.ZYX)[2]; System.out.println("Psi / GCRF = "+FastMath.toDegrees(psi)+" deg"); System.out.println("Teta / GCRF = "+FastMath.toDegrees(teta)+" deg"); System.out.println("Phi / GCRF = "+FastMath.toDegrees(phi)+" deg"); } }