|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object org.apache.commons.math3.distribution.AbstractMultivariateRealDistribution org.apache.commons.math3.distribution.MultivariateNormalDistribution
public class MultivariateNormalDistribution
Implementation of the multivariate normal (Gaussian) distribution.
Field Summary |
---|
Fields inherited from class org.apache.commons.math3.distribution.AbstractMultivariateRealDistribution |
---|
random |
Constructor Summary | |
---|---|
MultivariateNormalDistribution(double[] means,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and covariance matrix. |
|
MultivariateNormalDistribution(RandomGenerator rng,
double[] means,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and covariance matrix. |
Method Summary | |
---|---|
double |
density(double[] vals)
Returns the probability density function (PDF) of this distribution evaluated at the specified point x . |
RealMatrix |
getCovariances()
Gets the covariance matrix. |
double[] |
getMeans()
Gets the mean vector. |
double[] |
getStandardDeviations()
Gets the square root of each element on the diagonal of the covariance matrix. |
double[] |
sample()
Generates a random value vector sampled from this distribution. |
Methods inherited from class org.apache.commons.math3.distribution.AbstractMultivariateRealDistribution |
---|
getDimension, reseedRandomGenerator, sample |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public MultivariateNormalDistribution(double[] means, double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException
means
- Vector of means.covariances
- Covariance matrix.
DimensionMismatchException
- if the arrays length are
inconsistent.
SingularMatrixException
- if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.
NonPositiveDefiniteMatrixException
- if any of the eigenvalues is
negative.public MultivariateNormalDistribution(RandomGenerator rng, double[] means, double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException
rng
- Random Number Generator.means
- Vector of means.covariances
- Covariance matrix.
DimensionMismatchException
- if the arrays length are
inconsistent.
SingularMatrixException
- if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.
NonPositiveDefiniteMatrixException
- if any of the eigenvalues is
negative.Method Detail |
---|
public double[] getMeans()
public RealMatrix getCovariances()
public double density(double[] vals) throws DimensionMismatchException
x
. In general, the PDF is the
derivative of the cumulative distribution function. If the derivative
does not exist at x
, then an appropriate replacement should be
returned, e.g. Double.POSITIVE_INFINITY
, Double.NaN
, or
the limit inferior or limit superior of the difference quotient.
vals
- Point at which the PDF is evaluated.
x
.
DimensionMismatchException
public double[] getStandardDeviations()
public double[] sample()
sample
in interface MultivariateRealDistribution
sample
in class AbstractMultivariateRealDistribution
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |