org.apache.commons.math3.distribution
Class MultivariateNormalDistribution

java.lang.Object
  extended by org.apache.commons.math3.distribution.AbstractMultivariateRealDistribution
      extended by org.apache.commons.math3.distribution.MultivariateNormalDistribution
All Implemented Interfaces:
MultivariateRealDistribution

public class MultivariateNormalDistribution
extends AbstractMultivariateRealDistribution

Implementation of the multivariate normal (Gaussian) distribution.

Since:
3.1
Version:
$Id: MultivariateNormalDistribution.java 7721 2013-02-14 14:07:13Z CardosoP $
See Also:
Multivariate normal distribution (Wikipedia), Multivariate normal distribution (MathWorld)

Field Summary
 
Fields inherited from class org.apache.commons.math3.distribution.AbstractMultivariateRealDistribution
random
 
Constructor Summary
MultivariateNormalDistribution(double[] means, double[][] covariances)
          Creates a multivariate normal distribution with the given mean vector and covariance matrix.
MultivariateNormalDistribution(RandomGenerator rng, double[] means, double[][] covariances)
          Creates a multivariate normal distribution with the given mean vector and covariance matrix.
 
Method Summary
 double density(double[] vals)
          Returns the probability density function (PDF) of this distribution evaluated at the specified point x.
 RealMatrix getCovariances()
          Gets the covariance matrix.
 double[] getMeans()
          Gets the mean vector.
 double[] getStandardDeviations()
          Gets the square root of each element on the diagonal of the covariance matrix.
 double[] sample()
          Generates a random value vector sampled from this distribution.
 
Methods inherited from class org.apache.commons.math3.distribution.AbstractMultivariateRealDistribution
getDimension, reseedRandomGenerator, sample
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

MultivariateNormalDistribution

public MultivariateNormalDistribution(double[] means,
                                      double[][] covariances)
                               throws SingularMatrixException,
                                      DimensionMismatchException,
                                      NonPositiveDefiniteMatrixException
Creates a multivariate normal distribution with the given mean vector and covariance matrix.
The number of dimensions is equal to the length of the mean vector and to the number of rows and columns of the covariance matrix. It is frequently written as "p" in formulae.

Parameters:
means - Vector of means.
covariances - Covariance matrix.
Throws:
DimensionMismatchException - if the arrays length are inconsistent.
SingularMatrixException - if the eigenvalue decomposition cannot be performed on the provided covariance matrix.
NonPositiveDefiniteMatrixException - if any of the eigenvalues is negative.

MultivariateNormalDistribution

public MultivariateNormalDistribution(RandomGenerator rng,
                                      double[] means,
                                      double[][] covariances)
                               throws SingularMatrixException,
                                      DimensionMismatchException,
                                      NonPositiveDefiniteMatrixException
Creates a multivariate normal distribution with the given mean vector and covariance matrix.
The number of dimensions is equal to the length of the mean vector and to the number of rows and columns of the covariance matrix. It is frequently written as "p" in formulae.

Parameters:
rng - Random Number Generator.
means - Vector of means.
covariances - Covariance matrix.
Throws:
DimensionMismatchException - if the arrays length are inconsistent.
SingularMatrixException - if the eigenvalue decomposition cannot be performed on the provided covariance matrix.
NonPositiveDefiniteMatrixException - if any of the eigenvalues is negative.
Method Detail

getMeans

public double[] getMeans()
Gets the mean vector.

Returns:
the mean vector.

getCovariances

public RealMatrix getCovariances()
Gets the covariance matrix.

Returns:
the covariance matrix.

density

public double density(double[] vals)
               throws DimensionMismatchException
Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the cumulative distribution function. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.

Parameters:
vals - Point at which the PDF is evaluated.
Returns:
the value of the probability density function at point x.
Throws:
DimensionMismatchException

getStandardDeviations

public double[] getStandardDeviations()
Gets the square root of each element on the diagonal of the covariance matrix.

Returns:
the standard deviations.

sample

public double[] sample()
Generates a random value vector sampled from this distribution.

Specified by:
sample in interface MultivariateRealDistribution
Specified by:
sample in class AbstractMultivariateRealDistribution
Returns:
a random value vector.


Copyright © 2016 CNES. All Rights Reserved.