|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object org.apache.commons.math3.distribution.AbstractIntegerDistribution org.apache.commons.math3.distribution.PoissonDistribution
public class PoissonDistribution
Implementation of the Poisson distribution.
Field Summary | |
---|---|
static double |
DEFAULT_EPSILON
Default convergence criterion. |
static int |
DEFAULT_MAX_ITERATIONS
Default maximum number of iterations for cumulative probability calculations. |
Fields inherited from class org.apache.commons.math3.distribution.AbstractIntegerDistribution |
---|
random, randomData |
Constructor Summary | |
---|---|
PoissonDistribution(double p)
Creates a new Poisson distribution with specified mean. |
|
PoissonDistribution(double p,
double epsilon)
Creates a new Poisson distribution with the specified mean and convergence criterion. |
|
PoissonDistribution(double p,
double epsilon,
int maxIterations)
Creates a new Poisson distribution with specified mean, convergence criterion and maximum number of iterations. |
|
PoissonDistribution(double p,
int maxIterations)
Creates a new Poisson distribution with the specified mean and maximum number of iterations. |
|
PoissonDistribution(RandomGenerator rng,
double p,
double epsilon,
int maxIterations)
Creates a new Poisson distribution with specified mean, convergence criterion and maximum number of iterations. |
Method Summary | |
---|---|
double |
cumulativeProbability(int x)
For a random variable X whose values are distributed according
to this distribution, this method returns P(X <= x) . |
double |
getMean()
Get the mean for the distribution. |
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this distribution. |
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this distribution. |
int |
getSupportLowerBound()
Access the lower bound of the support. |
int |
getSupportUpperBound()
Access the upper bound of the support. |
boolean |
isSupportConnected()
Use this method to get information about whether the support is connected, i.e. |
double |
normalApproximateProbability(int x)
Calculates the Poisson distribution function using a normal approximation. |
double |
probability(int x)
For a random variable X whose values are distributed according
to this distribution, this method returns P(X = x) . |
int |
sample()
Generate a random value sampled from this distribution. |
Methods inherited from class org.apache.commons.math3.distribution.AbstractIntegerDistribution |
---|
cumulativeProbability, inverseCumulativeProbability, reseedRandomGenerator, sample, solveInverseCumulativeProbability |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
public static final int DEFAULT_MAX_ITERATIONS
public static final double DEFAULT_EPSILON
Constructor Detail |
---|
public PoissonDistribution(double p) throws NotStrictlyPositiveException
p
- the Poisson mean
NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(double p, double epsilon, int maxIterations) throws NotStrictlyPositiveException
p
- Poisson mean.epsilon
- Convergence criterion for cumulative probabilities.maxIterations
- the maximum number of iterations for cumulative
probabilities.
NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(RandomGenerator rng, double p, double epsilon, int maxIterations) throws NotStrictlyPositiveException
rng
- Random number generator.p
- Poisson mean.epsilon
- Convergence criterion for cumulative probabilities.maxIterations
- the maximum number of iterations for cumulative
probabilities.
NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(double p, double epsilon) throws NotStrictlyPositiveException
p
- Poisson mean.epsilon
- Convergence criterion for cumulative probabilities.
NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(double p, int maxIterations)
p
- Poisson mean.maxIterations
- Maximum number of iterations for cumulative
probabilities.Method Detail |
---|
public double getMean()
public double probability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X = x)
. In other
words, this method represents the probability mass function (PMF)
for the distribution.
x
- the point at which the PMF is evaluated
x
public double cumulativeProbability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X <= x)
. In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.
x
- the point at which the CDF is evaluated
x
public double normalApproximateProbability(int x)
N(mean, sqrt(mean))
distribution is used
to approximate the Poisson distribution. The computation uses
"half-correction" (evaluating the normal distribution function at
x + 0.5
).
x
- Upper bound, inclusive.
public double getNumericalMean()
p
, the mean is p
.
Double.NaN
if it is not definedpublic double getNumericalVariance()
p
, the variance is p
.
Double.POSITIVE_INFINITY
or
Double.NaN
if it is not defined)public int getSupportLowerBound()
inverseCumulativeProbability(0)
. In other words, this
method must return
inf {x in Z | P(X <= x) > 0}
.
public int getSupportUpperBound()
inverseCumulativeProbability(1)
. In other words, this
method must return
inf {x in R | P(X <= x) = 1}
.
Integer.MAX_VALUE
.
Integer.MAX_VALUE
for
positive infinity)public boolean isSupportConnected()
true
public int sample()
Algorithm Description:
Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.
sample
in interface IntegerDistribution
sample
in class AbstractIntegerDistribution
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |