org.apache.commons.math3.analysis.polynomials
Class PolynomialsUtils

java.lang.Object
  extended by org.apache.commons.math3.analysis.polynomials.PolynomialsUtils

public class PolynomialsUtils
extends Object

A collection of static methods that operate on or return polynomials.

Since:
2.0
Version:
$Id: PolynomialsUtils.java 3720 2012-03-16 16:34:17Z CardosoP $

Method Summary
static PolynomialFunction createChebyshevPolynomial(int degree)
          Create a Chebyshev polynomial of the first kind.
static PolynomialFunction createHermitePolynomial(int degree)
          Create a Hermite polynomial.
static PolynomialFunction createJacobiPolynomial(int degree, int v, int w)
          Create a Jacobi polynomial.
static PolynomialFunction createLaguerrePolynomial(int degree)
          Create a Laguerre polynomial.
static PolynomialFunction createLegendrePolynomial(int degree)
          Create a Legendre polynomial.
static double[] shift(double[] coefficients, double shift)
          Compute the coefficients of the polynomial Ps(x) whose values at point x will be the same as the those from the original polynomial P(x) when computed at x + shift.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Method Detail

createChebyshevPolynomial

public static PolynomialFunction createChebyshevPolynomial(int degree)
Create a Chebyshev polynomial of the first kind.

Chebyshev polynomials of the first kind are orthogonal polynomials. They can be defined by the following recurrence relations:

  T0(X)   = 1
  T1(X)   = X
  Tk+1(X) = 2X Tk(X) - Tk-1(X)
 

Parameters:
degree - degree of the polynomial
Returns:
Chebyshev polynomial of specified degree

createHermitePolynomial

public static PolynomialFunction createHermitePolynomial(int degree)
Create a Hermite polynomial.

Hermite polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:

  H0(X)   = 1
  H1(X)   = 2X
  Hk+1(X) = 2X Hk(X) - 2k Hk-1(X)
 

Parameters:
degree - degree of the polynomial
Returns:
Hermite polynomial of specified degree

createLaguerrePolynomial

public static PolynomialFunction createLaguerrePolynomial(int degree)
Create a Laguerre polynomial.

Laguerre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:

        L0(X)   = 1
        L1(X)   = 1 - X
  (k+1) Lk+1(X) = (2k + 1 - X) Lk(X) - k Lk-1(X)
 

Parameters:
degree - degree of the polynomial
Returns:
Laguerre polynomial of specified degree

createLegendrePolynomial

public static PolynomialFunction createLegendrePolynomial(int degree)
Create a Legendre polynomial.

Legendre polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:

        P0(X)   = 1
        P1(X)   = X
  (k+1) Pk+1(X) = (2k+1) X Pk(X) - k Pk-1(X)
 

Parameters:
degree - degree of the polynomial
Returns:
Legendre polynomial of specified degree

createJacobiPolynomial

public static PolynomialFunction createJacobiPolynomial(int degree,
                                                        int v,
                                                        int w)
Create a Jacobi polynomial.

Jacobi polynomials are orthogonal polynomials. They can be defined by the following recurrence relations:

        P0vw(X)   = 1
        P-1vw(X)  = 0
  2k(k + v + w)(2k + v + w - 2) Pkvw(X) =
  (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) X + v2 - w2] Pk-1vw(X)
  - 2(k + v - 1)(k + w - 1)(2k + v + w) Pk-2vw(X)
 

Parameters:
degree - degree of the polynomial
v - first exponent
w - second exponent
Returns:
Jacobi polynomial of specified degree

shift

public static double[] shift(double[] coefficients,
                             double shift)
Compute the coefficients of the polynomial Ps(x) whose values at point x will be the same as the those from the original polynomial P(x) when computed at x + shift. Thus, if P(x) = Σi ai xi, then
  
Ps(x) = Σi bi xi
= Σi ai (x + shift)i

Parameters:
coefficients - Coefficients of the original polynomial.
shift - Shift value.
Returns:
the coefficients bi of the shifted polynomial.


Copyright © 2017 CNES. All Rights Reserved.