S
- Type of the embedding space.T
- Type of the embedded sub-space.public interface Embedding<S extends Space,T extends Space>
Sub-spaces are the lower dimensions subsets of a n-dimensions space. The (n-1)-dimension sub-spaces are specific
sub-spaces known as hyperplanes
. This interface can be used regardless of the dimensions
differences. As an example, Line
in 3D implements
Embedding<Vector3D
, {link
fr.cnes.sirius.patrius.math.geometry.euclidean.oned.Vector1D Vector1D>, i.e. it maps directly dimensions 3 and 1.
In the 3D euclidean space, hyperplanes are 2D planes, and the 1D sub-spaces are lines.
Hyperplane
Vector<T> toSubSpace(Vector<S> point)
point
- n-dimension point of the spacetoSpace(fr.cnes.sirius.patrius.math.geometry.Vector<T>)
Vector<S> toSpace(Vector<T> point)
point
- (n-1)-dimension point of the sub-spacetoSubSpace(fr.cnes.sirius.patrius.math.geometry.Vector<S>)
Copyright © 2017 CNES. All rights reserved.