public class MultiDirectionalSimplex extends AbstractSimplex
Constructor and Description |
---|
MultiDirectionalSimplex(double[] steps)
Build a multi-directional simplex with default coefficients.
|
MultiDirectionalSimplex(double[][] referenceSimplex)
Build a multi-directional simplex with default coefficients.
|
MultiDirectionalSimplex(double[][] referenceSimplex,
double khiIn,
double gammaIn)
Build a multi-directional simplex with specified coefficients.
|
MultiDirectionalSimplex(double[] steps,
double khiIn,
double gammaIn)
Build a multi-directional simplex with specified coefficients.
|
MultiDirectionalSimplex(int n)
Build a multi-directional simplex with default coefficients.
|
MultiDirectionalSimplex(int n,
double sideLength)
Build a multi-directional simplex with default coefficients.
|
MultiDirectionalSimplex(int n,
double khiIn,
double gammaIn)
Build a multi-directional simplex with specified coefficients.
|
MultiDirectionalSimplex(int n,
double sideLength,
double khiIn,
double gammaIn)
Build a multi-directional simplex with specified coefficients.
|
Modifier and Type | Method and Description |
---|---|
void |
iterate(MultivariateFunction evaluationFunction,
Comparator<PointValuePair> comparator)
Compute the next simplex of the algorithm.
|
build, evaluate, getDimension, getPoint, getPoints, getSize, replaceWorstPoint, setPoint, setPoints
public MultiDirectionalSimplex(int n)
n
- Dimension of the simplex.public MultiDirectionalSimplex(int n, double sideLength)
n
- Dimension of the simplex.sideLength
- Length of the sides of the default (hypercube)
simplex. See AbstractSimplex.AbstractSimplex(int,double)
.public MultiDirectionalSimplex(int n, double khiIn, double gammaIn)
n
- Dimension of the simplex. See AbstractSimplex.AbstractSimplex(int,double)
.khiIn
- Expansion coefficient.gammaIn
- Contraction coefficient.public MultiDirectionalSimplex(int n, double sideLength, double khiIn, double gammaIn)
n
- Dimension of the simplex. See AbstractSimplex.AbstractSimplex(int,double)
.sideLength
- Length of the sides of the default (hypercube)
simplex. See AbstractSimplex.AbstractSimplex(int,double)
.khiIn
- Expansion coefficient.gammaIn
- Contraction coefficient.public MultiDirectionalSimplex(double[] steps)
steps
- Steps along the canonical axes representing box edges.
They may be negative but not zero. Seepublic MultiDirectionalSimplex(double[] steps, double khiIn, double gammaIn)
steps
- Steps along the canonical axes representing box edges.
They may be negative but not zero. See AbstractSimplex.AbstractSimplex(double[])
.khiIn
- Expansion coefficient.gammaIn
- Contraction coefficient.public MultiDirectionalSimplex(double[][] referenceSimplex)
referenceSimplex
- Reference simplex. See AbstractSimplex.AbstractSimplex(double[][])
.public MultiDirectionalSimplex(double[][] referenceSimplex, double khiIn, double gammaIn)
referenceSimplex
- Reference simplex. See AbstractSimplex.AbstractSimplex(double[][])
.khiIn
- Expansion coefficient.gammaIn
- Contraction coefficient.NotStrictlyPositiveException
- if the reference simplex does not contain at least one point.DimensionMismatchException
- if there is a dimension mismatch in the reference simplex.public void iterate(MultivariateFunction evaluationFunction, Comparator<PointValuePair> comparator)
iterate
in class AbstractSimplex
evaluationFunction
- Evaluation function.comparator
- Comparator to use to sort simplex vertices from best
to worst.Copyright © 2018 CNES. All Rights Reserved.