public final class EquatorialOrbit extends Orbit
The parameters used internally are the equatorial elements (see EquatorialParameters
for more information.
The instance EquatorialOrbit
is guaranteed to be immutable.
Orbit
,
CircularOrbit
,
CartesianOrbit
,
EquinoctialOrbit
,
Serialized FormConstructor and Description |
---|
EquatorialOrbit(double a,
double e,
double pomega,
double ix,
double iy,
double anomaly,
PositionAngle type,
Frame frame,
AbsoluteDate date,
double mu)
Creates a new instance.
|
EquatorialOrbit(IOrbitalParameters parametersIn,
Frame frame,
AbsoluteDate date)
Creates a new instance.
|
EquatorialOrbit(Orbit op)
Constructor from any kind of orbital parameters.
|
EquatorialOrbit(PVCoordinates pvCoordinates,
Frame frame,
AbsoluteDate date,
double mu)
Constructor from cartesian parameters.
|
Modifier and Type | Method and Description |
---|---|
protected double[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
double |
getA()
Get the semi-major axis.
|
double |
getAnomaly(PositionAngle type)
Get the anomaly.
|
double |
getE()
Get the eccentricity.
|
double |
getEccentricAnomaly()
Get the eccentric anomaly.
|
EquatorialParameters |
getEquatorialParameters()
Getter for underlying equatorial parameters.
|
double |
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.
|
double |
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.
|
double |
getHx()
Get hx = ix / (2 * cos(i/2)), where ix is the first component of the inclination vector.
|
double |
getHy()
Get hy = iy / (2 * cos(i/2)), where iy is the second component of the inclination vector.
|
double |
getI()
Get the inclination.
|
double |
getIx()
Get the first component of the inclination vector.
|
double |
getIy()
Get the second component of the inclination vector.
|
double |
getLE()
Get the eccentric longitude argument.
|
double |
getLM()
Get the mean longitude argument.
|
double |
getLv()
Get the true longitude argument.
|
double |
getMeanAnomaly()
Get the mean anomaly.
|
IOrbitalParameters |
getParameters()
Get underlying orbital parameters.
|
double |
getPomega()
Get the longitude of the periapsis (ω + Ω).
|
double |
getTrueAnomaly()
Get the true anomaly.
|
OrbitType |
getType()
Get the orbit type.
|
protected PVCoordinates |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
EquatorialOrbit |
interpolate(AbsoluteDate date,
Collection<Orbit> sample)
Get an interpolated instance.
|
protected void |
orbitAddKeplerContribution(PositionAngle type,
double gm,
double[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
|
protected EquatorialOrbit |
orbitShiftedBy(double dt)
Get a time-shifted orbit.
|
String |
toString() |
addKeplerContribution, createInverseJacobian, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobian, getJacobianWrtCartesian, getJacobianWrtParameters, getJacobianWrtParametersEccentric, getJacobianWrtParametersMean, getJacobianWrtParametersTrue, getKeplerianMeanMotion, getKeplerianPeriod, getKeplerianTransitionMatrix, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, isPositiveDefinite, setJacobianWrtParametersEccentric, setJacobianWrtParametersMean, setJacobianWrtParametersTrue, shiftedBy
public EquatorialOrbit(IOrbitalParameters parametersIn, Frame frame, AbsoluteDate date)
parametersIn
- orbital parametersframe
- the frame in which the parameters are defined
(must be a pseudo-inertial frame
)date
- date of the orbital parameterspublic EquatorialOrbit(double a, double e, double pomega, double ix, double iy, double anomaly, PositionAngle type, Frame frame, AbsoluteDate date, double mu)
a
- semi-major axis (m)e
- eccentricitypomega
- ω + Ω (rad)ix
- 2 sin(i/2) cos(Ω), first component of inclination vectoriy
- 2 sin(i/2) sin(Ω), second component of inclination vectoranomaly
- (M or E or v) = anomaly mean, eccentric or true anomaly (rad)type
- type of anomalyframe
- the frame in which the parameters are defineddate
- date of the orbital parametersmu
- central attraction coefficient (m3/s2)IllegalArgumentException
- if orbit is hyperbolicIllegalArgumentException
- if orbit mismatch with conic typeIllegalArgumentException
- if inclination vector is not valid, meaning ix^2 + iy^2 > 4public EquatorialOrbit(PVCoordinates pvCoordinates, Frame frame, AbsoluteDate date, double mu)
pvCoordinates
- the PVCoordinates of the satelliteframe
- the frame in which are defined the PVCoordinates
date
- date of the orbital parametersmu
- central attraction coefficient (m3/s2)IllegalArgumentException
- if orbit is hyperbolicpublic EquatorialOrbit(Orbit op)
op
- orbital parameters to copypublic IOrbitalParameters getParameters()
getParameters
in class Orbit
public EquatorialParameters getEquatorialParameters()
public OrbitType getType()
public double getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
public double getE()
public double getI()
public double getAnomaly(PositionAngle type)
type
- type of the anglepublic double getPomega()
public double getTrueAnomaly()
public double getEccentricAnomaly()
public double getMeanAnomaly()
public double getEquinoctialEx()
getEquinoctialEx
in class Orbit
public double getEquinoctialEy()
getEquinoctialEy
in class Orbit
public double getIx()
public double getIy()
public double getHx()
public double getHy()
public double getLv()
public double getLE()
public double getLM()
protected PVCoordinates initPVCoordinates()
initPVCoordinates
in class Orbit
protected EquatorialOrbit orbitShiftedBy(double dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
orbitShiftedBy
in class Orbit
dt
- time shift in secondspublic EquatorialOrbit interpolate(AbsoluteDate date, Collection<Orbit> sample)
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
The interpolated instance is created by polynomial Hermite interpolation on Keplerian elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
date
- interpolation datesample
- sample points on which interpolation should be doneprotected double[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian
in class Orbit
Orbit.computeJacobianEccentricWrtCartesian()
,
Orbit.computeJacobianTrueWrtCartesian()
protected double[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian
in class Orbit
Orbit.computeJacobianMeanWrtCartesian()
,
Orbit.computeJacobianTrueWrtCartesian()
protected double[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian
in class Orbit
Orbit.computeJacobianMeanWrtCartesian()
,
Orbit.computeJacobianEccentricWrtCartesian()
protected void orbitAddKeplerContribution(PositionAngle type, double gm, double[] pDot)
This method is used by numerical propagators to evaluate the part of Keplerrian motion to evolution of the orbital state.
orbitAddKeplerContribution
in class Orbit
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)Copyright © 2018 CNES. All Rights Reserved.