Modifier and Type | Class and Description |
---|---|
class |
AdaptiveSimpsonIntegrator
Implements Simpson's Rule for the
integration of real univariate functions.
|
class |
BaseAbstractUnivariateIntegrator
Provide a default implementation for several generic functions.
|
class |
FixedStepSimpsonIntegrator
Implements
Simpson's Rule for integration of real univariate functions.
|
class |
IterativeLegendreGaussIntegrator
This algorithm divides the integration interval into equally-sized
sub-interval and on each of them performs a
Legendre-Gauss quadrature.
|
class |
RombergIntegrator
Implements the
Romberg Algorithm for integration of real univariate functions.
|
class |
SimpsonIntegrator
Implements
Simpson's Rule for integration of real univariate functions.
|
class |
TrapezoidIntegrator
Implements the
Trapezoid Rule for integration of real univariate functions.
|
Modifier and Type | Method and Description |
---|---|
UnivariateIntegrator |
DelegatedBivariateIntegrator.getIntegratorX()
Gets the univariate integrator associated to the 1st axis.
|
UnivariateIntegrator |
DelegatedBivariateIntegrator.getIntegratorY()
Gets the univariate integrator associated to the 2nd axis.
|
Constructor and Description |
---|
DelegatedBivariateIntegrator(UnivariateIntegrator integratorXIn,
UnivariateIntegrator integratorYIn)
Build a bivariate integrator with the two specified univariate
integrators.
|
Modifier and Type | Method and Description |
---|---|
void |
FourierDecompositionEngine.setIntegrator(UnivariateIntegrator newIntegrator)
Set the
UnivariateIntegrator to use for the serires coefficient computation. |
Constructor and Description |
---|
FourierDecompositionEngine(UnivariateIntegrator newIntegrator)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
UnivariateIntegrator |
AbstractVector3DFunction.getIntegrator()
Get the integrator.
|
Constructor and Description |
---|
AbstractVector3DFunction(AbsoluteDate zeroDate,
UnivariateVectorFunctionDifferentiator inDifferentiator,
UnivariateIntegrator inIntegrator)
Constructor.
|
Copyright © 2023 CNES. All rights reserved.