public abstract class AdamsIntegrator extends MultistepIntegrator
Adams-Bashforth
and Adams-Moulton
integrators.MultistepIntegrator.NordsieckTransformer
nordsieck, scaled
mainSetDimension, scalAbsoluteTolerance, scalRelativeTolerance, vecAbsoluteTolerance, vecRelativeTolerance
isLastStep, lastStepHandle, resetOccurred, stepHandlers, stepSize, stepStart
Constructor and Description |
---|
AdamsIntegrator(String name,
int nSteps,
int order,
double minStep,
double maxStep,
double[] vecAbsoluteTolerance,
double[] vecRelativeTolerance,
boolean acceptSmall)
Build an Adams integrator with the given order and step control parameters.
|
AdamsIntegrator(String name,
int nSteps,
int order,
double minStep,
double maxStep,
double scalAbsoluteTolerance,
double scalRelativeTolerance,
boolean acceptSmall)
Build an Adams integrator with the given order and step control parameters.
|
Modifier and Type | Method and Description |
---|---|
protected Array2DRowRealMatrix |
initializeHighOrderDerivatives(double h,
double[] t,
double[][] y,
double[][] yDot)
Initialize the high order scaled derivatives at step start.
|
abstract void |
integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
Array2DRowRealMatrix |
updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).
|
void |
updateHighOrderDerivativesPhase2(double[] start,
double[] end,
Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).
|
computeStepGrowShrinkFactor, getMaxGrowth, getMinReduction, getSafety, getStarterIntegrator, setMaxGrowth, setMinReduction, setSafety, setStarterIntegrator, start
filterStep, getCurrentStepStart, getMaxStep, getMinStep, getScalAbsoluteTolerance, getScalRelativeTolerance, getVecAbsoluteTolerance, getVecRelativeTolerance, initializeStep, resetInternalState, sanityChecks, setInitialStepSize, setStepSizeControl, setStepSizeControl, setVecAbsoluteTolerance, setVecRelativeTolerance
acceptStep, addEventHandler, addEventHandler, addStepHandler, avoidOvershoot, clearEventHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getEvaluations, getEventHandlers, getMaxEvaluations, getName, getStepHandlers, handleLastStep, initIntegration, integrate, removeEventState, setEquations, setMaxEvaluations, setStateInitialized
addObserver, clearChanged, countObservers, deleteObserver, deleteObservers, hasChanged, notifyObservers, notifyObservers, setChanged
public AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance, boolean acceptSmall)
name
- name of the methodnSteps
- number of steps of the method excluding the one being computedorder
- order of the methodminStep
- minimal step (sign is irrelevant, regardless of integration direction, forward
or backward), the last step can be smaller than thismaxStep
- maximal step (sign is irrelevant, regardless of integration direction, forward
or backward), the last step can be smaller than thisscalAbsoluteTolerance
- allowed absolute errorscalRelativeTolerance
- allowed relative erroracceptSmall
- if true, steps smaller than the minimal value are silently increased up to
this value, if false such small steps generate an exceptionNumberIsTooSmallException
- if order is 1 or lesspublic AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance, boolean acceptSmall)
name
- name of the methodnSteps
- number of steps of the method excluding the one being computedorder
- order of the methodminStep
- minimal step (sign is irrelevant, regardless of integration direction, forward
or backward), the last step can be smaller than thismaxStep
- maximal step (sign is irrelevant, regardless of integration direction, forward
or backward), the last step can be smaller than thisvecAbsoluteTolerance
- allowed absolute errorvecRelativeTolerance
- allowed relative erroracceptSmall
- if true, steps smaller than the minimal value are silently increased up to
this value, if false such small steps generate an exceptionIllegalArgumentException
- if order is 1 or lesspublic abstract void integrate(ExpandableStatefulODE equations, double t)
This method solves an Initial Value Problem (IVP).
The set of differential equations is composed of a main set, which can be extended by some sets of secondary equations. The set of equations must be already set up with initial time and partial states. At integration completion, the final time and partial states will be available in the same object.
Since this method stores some internal state variables made available in its public interface during integration
(AbstractIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.
integrate
in class AdaptiveStepsizeIntegrator
equations
- complete set of differential equations to integratet
- target time for the integration
(can be set to a value smaller than t0
for backward integration)protected Array2DRowRealMatrix initializeHighOrderDerivatives(double h, double[] t, double[][] y, double[][] yDot)
initializeHighOrderDerivatives
in class MultistepIntegrator
h
- step size to use for scalingt
- first steps timesy
- first steps statesyDot
- first steps derivativespublic Array2DRowRealMatrix updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
The complete update of high order derivatives has a form similar to:
rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rnthis method computes the P-1 A P rn part.
highOrder
- high order scaled derivatives
(h2/2 y'', ... hk/k! y(k))updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix)
public void updateHighOrderDerivativesPhase2(double[] start, double[] end, Array2DRowRealMatrix highOrder)
The complete update of high order derivatives has a form similar to:
rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rnthis method computes the (s1(n) - s1(n+1)) P-1 u part.
Phase 1 of the update must already have been performed.
start
- first order scaled derivatives at step startend
- first order scaled derivatives at step endhighOrder
- high order scaled derivatives, will be modified
(h2/2 y'', ... hk/k! y(k))updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)
Copyright © 2023 CNES. All rights reserved.