public class GammaDistribution extends AbstractRealDistribution
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy.
|
random, SOLVER_DEFAULT_ABSOLUTE_ACCURACY
Constructor and Description |
---|
GammaDistribution(double shapeIn,
double scaleIn)
Creates a new gamma distribution with specified values of the shape and
scale parameters.
|
GammaDistribution(double shapeIn,
double scaleIn,
double inverseCumAccuracy)
Creates a new gamma distribution with specified values of the shape and
scale parameters.
|
GammaDistribution(RandomGenerator rng,
double shapeIn,
double scaleIn,
double inverseCumAccuracy)
Creates a Gamma distribution.
|
Modifier and Type | Method and Description |
---|---|
double |
cumulativeProbability(double x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x) . |
double |
density(double x)
Returns the probability density function (PDF) of this distribution
evaluated at the specified point
x . |
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
double |
getScale()
Returns the scale parameter of
this distribution. |
double |
getShape()
Returns the shape parameter of
this distribution. |
protected double |
getSolverAbsoluteAccuracy()
Returns the solver absolute accuracy for inverse cumulative computation.
|
double |
getSupportLowerBound()
Access the lower bound of the support.
|
double |
getSupportUpperBound()
Access the upper bound of the support.
|
boolean |
isSupportConnected()
Use this method to get information about whether the support is connected,
i.e.
|
boolean |
isSupportLowerBoundInclusive()
Returns true if support contains lower bound.
|
boolean |
isSupportUpperBoundInclusive()
Returns true if support contains upper bound.
|
double |
sample()
This implementation uses the following algorithms:
|
inverseCumulativeProbability, probability, probability, reseedRandomGenerator, sample
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public GammaDistribution(double shapeIn, double scaleIn)
shapeIn
- the shape parameterscaleIn
- the scale parameterNotStrictlyPositiveException
- if shape <= 0
or scale <= 0
.public GammaDistribution(double shapeIn, double scaleIn, double inverseCumAccuracy)
shapeIn
- the shape parameterscaleIn
- the scale parameterinverseCumAccuracy
- the maximum absolute error in inverse
cumulative probability estimates (defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY
).NotStrictlyPositiveException
- if shape <= 0
or scale <= 0
.public GammaDistribution(RandomGenerator rng, double shapeIn, double scaleIn, double inverseCumAccuracy)
rng
- Random number generator.shapeIn
- the shape parameterscaleIn
- the scale parameterinverseCumAccuracy
- the maximum absolute error in inverse
cumulative probability estimates (defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY
).NotStrictlyPositiveException
- if shape <= 0
or scale <= 0
.public double getShape()
this
distribution.public double getScale()
this
distribution.public double density(double x)
x
. In general, the PDF is
the derivative of the CDF
.
If the derivative does not exist at x
, then an appropriate
replacement should be returned, e.g. Double.POSITIVE_INFINITY
, Double.NaN
, or the limit inferior
or limit superior of the
difference quotient.x
- the point at which the PDF is evaluatedx
public double cumulativeProbability(double x)
X
whose values are distributed according
to this distribution, this method returns P(X <= x)
. In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.
The implementation of this method is based on:
x
- the point at which the CDF is evaluatedx
protected double getSolverAbsoluteAccuracy()
getSolverAbsoluteAccuracy
in class AbstractRealDistribution
public double getNumericalMean()
alpha
and scale parameter beta
, the
mean is alpha * beta
.Double.NaN
if it is not definedpublic double getNumericalVariance()
alpha
and scale parameter beta
, the
variance is alpha * beta^2
.Double.POSITIVE_INFINITY
as
for certain cases in TDistribution
) or Double.NaN
if it
is not definedpublic double getSupportLowerBound()
inverseCumulativeProbability(0)
. In other words, this
method must return
inf {x in R | P(X <= x) > 0}
.
public double getSupportUpperBound()
inverseCumulativeProbability(1)
. In other words, this
method must return
inf {x in R | P(X <= x) = 1}
.
public boolean isSupportLowerBoundInclusive()
public boolean isSupportUpperBoundInclusive()
public boolean isSupportConnected()
true
public double sample()
This implementation uses the following algorithms:
For 0 < shape < 1:
Ahrens, J. H. and Dieter, U., Computer methods for sampling from gamma, beta, Poisson and binomial
distributions. Computing, 12, 223-246, 1974.
For shape >= 1:
Marsaglia and Tsang, A Simple Method for Generating Gamma Variables. ACM Transactions on Mathematical
Software, Volume 26 Issue 3, September, 2000.
sample
in interface RealDistribution
sample
in class AbstractRealDistribution
Copyright © 2019 CNES. All Rights Reserved.