Modifier and Type | Method and Description |
---|---|
static int |
addAndCheck(int x,
int y)
Add two integers, checking for overflow.
|
static long |
addAndCheck(long a,
long b)
Add two long integers, checking for overflow.
|
static long |
binomialCoefficient(int n,
int k)
Returns an exact representation of the Binomial
Coefficient, "
n choose k ", the number of k -element subsets that can be selected from an
n -element set. |
static double |
binomialCoefficientDouble(int n,
int k)
Returns a
double representation of the Binomial
Coefficient, "n choose k ", the number of k -element subsets that can be selected from an
n -element set. |
static double |
binomialCoefficientLog(int n,
int k)
Returns the natural
log of the Binomial
Coefficient, "n choose k ", the number of k -element subsets that can be selected from an
n -element set. |
static long |
factorial(int n)
Returns n!.
|
static double |
factorialDouble(int n)
Compute n!
|
static double |
factorialLog(int n)
Compute the natural logarithm of the factorial of
n . |
static int |
gcd(int p,
int q)
Computes the greatest common divisor of the absolute value of two
numbers, using a modified version of the "binary gcd" method.
|
static long |
gcd(long p,
long q)
Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids
division and modulo operations.
|
static boolean |
isPowerOfTwo(long n)
Returns true if the argument is a power of two.
|
static int |
lcm(int a,
int b)
Returns the least common multiple of the absolute value of two numbers, using the formula
lcm(a,b) = (a / gcd(a,b)) * b . |
static long |
lcm(long a,
long b)
Returns the least common multiple of the absolute value of two numbers, using the formula
lcm(a,b) = (a / gcd(a,b)) * b . |
static int |
mulAndCheck(int x,
int y)
Multiply two integers, checking for overflow.
|
static long |
mulAndCheck(long a,
long b)
Multiply two long integers, checking for overflow.
|
static BigInteger |
pow(BigInteger k,
BigInteger eIn)
Raise a BigInteger to a BigInteger power.
|
static BigInteger |
pow(BigInteger k,
int e)
Raise a BigInteger to an int power.
|
static BigInteger |
pow(BigInteger k,
long eIn)
Raise a BigInteger to a long power.
|
static int |
pow(int k,
int eIn)
Raise an int to an int power.
|
static int |
pow(int k,
long eIn)
Raise an int to a long power.
|
static long |
pow(long k,
int eIn)
Raise a long to an int power.
|
static long |
pow(long k,
long eIn)
Raise a long to a long power.
|
static long |
stirlingS2(int n,
int k)
Returns the
Stirling number of the second kind, "
S(n,k) ", the number of
ways of partitioning an n -element set into k non-empty
subsets. |
static int |
subAndCheck(int x,
int y)
Subtract two integers, checking for overflow.
|
static long |
subAndCheck(long a,
long b)
Subtract two long integers, checking for overflow.
|
public static int addAndCheck(int x, int y)
x
- an addendy
- an addendx+y
MathArithmeticException
- if the result can not be represented
as an int
.public static long addAndCheck(long a, long b)
a
- an addendb
- an addenda+b
MathArithmeticException
- if the result can not be represented as an
longpublic static long binomialCoefficient(int n, int k)
n choose k
", the number of k
-element subsets that can be selected from an
n
-element set.
Preconditions:
0 <= k <= n
(otherwise IllegalArgumentException
is thrown)long
. The largest value of n
for which all
coefficients are < Long.MAX_VALUE
is 66. If the computed value exceeds Long.MAX_VALUE
an
ArithMeticException
is thrown.n
- the size of the setk
- the size of the subsets to be countedn choose k
NotPositiveException
- if n < 0
.NumberIsTooLargeException
- if k > n
.MathArithmeticException
- if the result is too large to be
represented by a long integer.public static double binomialCoefficientDouble(int n, int k)
double
representation of the Binomial
Coefficient, "n choose k
", the number of k
-element subsets that can be selected from an
n
-element set.
Preconditions:
0 <= k <= n
(otherwise IllegalArgumentException
is thrown)double
. The largest value of n
for which all
coefficients are < Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
Double.POSITIVE_INFINITY is returnedn
- the size of the setk
- the size of the subsets to be countedn choose k
NotPositiveException
- if n < 0
.NumberIsTooLargeException
- if k > n
.MathArithmeticException
- if the result is too large to be
represented by a long integer.public static double binomialCoefficientLog(int n, int k)
log
of the Binomial
Coefficient, "n choose k
", the number of k
-element subsets that can be selected from an
n
-element set.
Preconditions:
0 <= k <= n
(otherwise IllegalArgumentException
is thrown)n
- the size of the setk
- the size of the subsets to be countedn choose k
NotPositiveException
- if n < 0
.NumberIsTooLargeException
- if k > n
.MathArithmeticException
- if the result is too large to be
represented by a long integer.public static long factorial(int n)
n
Factorial, the
product of the numbers 1,...,n
.
Preconditions:
n >= 0
(otherwise IllegalArgumentException
is thrown)long
. The largest value of n
for which n!
<
Long.MAX_VALUE} is 20. If the computed value exceeds Long.MAX_VALUE
an ArithMeticException
is
thrown.n
- argumentn!
MathArithmeticException
- if the result is too large to be represented
by a long
.NotPositiveException
- if n < 0
.MathArithmeticException
- if n > 20
: The factorial value is too
large to fit in a long
.public static double factorialDouble(int n)
n
(the product of the numbers 1 to n), as a double
.
The result should be small enough to fit into a double
: The
largest n
for which n! < Double.MAX_VALUE
is 170.
If the computed value exceeds Double.MAX_VALUE
, Double.POSITIVE_INFINITY
is returned.n
- Argument.n!
NotPositiveException
- if n < 0
.public static double factorialLog(int n)
n
.n
- Argument.n!
NotPositiveException
- if n < 0
.public static int gcd(int p, int q)
gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)
, gcd(Integer.MIN_VALUE, 0)
and
gcd(0, Integer.MIN_VALUE)
throw an ArithmeticException
, because the result would be 2^31, which
is too large for an int value.gcd(x, x)
, gcd(0, x)
and gcd(x, 0)
is the absolute value of x
,
except for the special cases above.gcd(0, 0)
is the only one which returns 0
.p
- Number.q
- Number.MathArithmeticException
- if the result cannot be represented as
a non-negative int
value.public static long gcd(long p, long q)
Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef Stein (1961).
Special cases:gcd(Long.MIN_VALUE, Long.MIN_VALUE)
, gcd(Long.MIN_VALUE, 0L)
and
gcd(0L, Long.MIN_VALUE)
throw an ArithmeticException
, because the result would be 2^63, which is
too large for a long value.gcd(x, x)
, gcd(0L, x)
and gcd(x, 0L)
is the absolute value of x
, except for the special cases above.
gcd(0L, 0L)
is the only one which returns 0L
.p
- Number.q
- Number.MathArithmeticException
- if the result cannot be represented as
a non-negative long
value.public static int lcm(int a, int b)
Returns the least common multiple of the absolute value of two numbers, using the formula
lcm(a,b) = (a / gcd(a,b)) * b
.
lcm(Integer.MIN_VALUE, n)
and lcm(n, Integer.MIN_VALUE)
, where abs(n)
is a power of 2, throw an ArithmeticException
, because the result would be 2^31, which is too large for
an int value.lcm(0, x)
and lcm(x, 0)
is 0
for any x
.
a
- Number.b
- Number.MathArithmeticException
- if the result cannot be represented as
a non-negative int
value.public static long lcm(long a, long b)
Returns the least common multiple of the absolute value of two numbers, using the formula
lcm(a,b) = (a / gcd(a,b)) * b
.
lcm(Long.MIN_VALUE, n)
and lcm(n, Long.MIN_VALUE)
, where abs(n)
is a
power of 2, throw an ArithmeticException
, because the result would be 2^63, which is too large for an int
value.lcm(0L, x)
and lcm(x, 0L)
is 0L
for any x
.
a
- Number.b
- Number.MathArithmeticException
- if the result cannot be represented
as a non-negative long
value.public static int mulAndCheck(int x, int y)
x
- Factor.y
- Factor.x * y
.MathArithmeticException
- if the result can not be
represented as an int
.public static long mulAndCheck(long a, long b)
a
- Factor.b
- Factor.a * b
.MathArithmeticException
- if the result can not be represented
as a long
.public static int subAndCheck(int x, int y)
x
- Minuend.y
- Subtrahend.x - y
.MathArithmeticException
- if the result can not be represented
as an int
.public static long subAndCheck(long a, long b)
a
- Value.b
- Value.a - b
.MathArithmeticException
- if the result can not be represented as a long
.public static int pow(int k, int eIn)
k
- Number to raise.eIn
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static int pow(int k, long eIn)
k
- Number to raise.eIn
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static long pow(long k, int eIn)
k
- Number to raise.eIn
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static long pow(long k, long eIn)
k
- Number to raise.eIn
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static BigInteger pow(BigInteger k, int e)
k
- Number to raise.e
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static BigInteger pow(BigInteger k, long eIn)
k
- Number to raise.eIn
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static BigInteger pow(BigInteger k, BigInteger eIn)
k
- Number to raise.eIn
- Exponent (must be positive or zero).NotPositiveException
- if e < 0
.public static long stirlingS2(int n, int k)
S(n,k)
", the number of
ways of partitioning an n
-element set into k
non-empty
subsets.
The preconditions are 0 <= k <= n
(otherwise NotPositiveException
is thrown)
n
- the size of the setk
- the number of non-empty subsetsS(n,k)
NotPositiveException
- if k < 0
.NumberIsTooLargeException
- if k > n
.MathArithmeticException
- if some overflow happens, typically for n exceeding 25 and
k between 20 and n-2 (S(n,n-1) is handled specifically and does not overflow)public static boolean isPowerOfTwo(long n)
n
- the number to testCopyright © 2019 CNES. All rights reserved.