public class MultivariateNormalDistribution extends AbstractMultivariateRealDistribution
random
Constructor and Description |
---|
MultivariateNormalDistribution(double[] meansIn,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and
covariance matrix.
|
MultivariateNormalDistribution(RandomGenerator rng,
double[] meansIn,
double[][] covariances)
Creates a multivariate normal distribution with the given mean vector and
covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
double |
density(double[] vals)
Returns the probability density function (PDF) of this distribution
evaluated at the specified point
x . |
RealMatrix |
getCovariances()
Gets the covariance matrix.
|
double[] |
getMeans()
Gets the mean vector.
|
double[] |
getStandardDeviations()
Gets the square root of each element on the diagonal of the covariance
matrix.
|
double[] |
sample()
Generates a random value vector sampled from this distribution.
|
getDimension, reseedRandomGenerator, sample
public MultivariateNormalDistribution(double[] meansIn, double[][] covariances)
meansIn
- Vector of means.covariances
- Covariance matrix.DimensionMismatchException
- if the arrays length are
inconsistent.SingularMatrixException
- if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.NonPositiveDefiniteMatrixException
- if any of the eigenvalues is
negative.public MultivariateNormalDistribution(RandomGenerator rng, double[] meansIn, double[][] covariances)
rng
- Random Number Generator.meansIn
- Vector of means.covariances
- Covariance matrix.DimensionMismatchException
- if the arrays length are
inconsistent.SingularMatrixException
- if the eigenvalue decomposition cannot
be performed on the provided covariance matrix.NonPositiveDefiniteMatrixException
- if any of the eigenvalues is
negative.public double[] getMeans()
public RealMatrix getCovariances()
public double density(double[] vals)
x
. In general, the PDF is the
derivative of the cumulative distribution function. If the derivative
does not exist at x
, then an appropriate replacement should be
returned, e.g. Double.POSITIVE_INFINITY
, Double.NaN
, or
the limit inferior or limit superior of the difference quotient.vals
- Point at which the PDF is evaluated.x
.public double[] getStandardDeviations()
public double[] sample()
sample
in interface MultivariateRealDistribution
sample
in class AbstractMultivariateRealDistribution
Copyright © 2020 CNES. All rights reserved.