public class Covariance extends Object
The constructors that take RealMatrix
or double[][]
arguments generate covariance matrices.
The columns of the input matrices are assumed to represent variable values.
The constructor argument biasCorrected
determines whether or not computed covariances are
bias-corrected.
Unbiased covariances are given by the formula
cov(X, Y) = Σ[(xi - E(X))(yi - E(Y))] / (n - 1)
where E(X)
is
the mean of X
and E(Y)
is the mean of the Y
values.
Non-bias-corrected estimates use n
in place of n - 1
Constructor and Description |
---|
Covariance()
Create a Covariance with no data
|
Covariance(double[][] data)
Create a Covariance matrix from a rectangular array
whose columns represent covariates.
|
Covariance(double[][] data,
boolean biasCorrected)
Create a Covariance matrix from a rectangular array
whose columns represent covariates.
|
Covariance(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Covariance(RealMatrix matrix,
boolean biasCorrected)
Create a covariance matrix from a matrix whose columns
represent covariates.
|
Modifier and Type | Method and Description |
---|---|
protected RealMatrix |
computeCovarianceMatrix(double[][] data)
Create a covariance matrix from a rectangular array whose columns represent
covariates.
|
protected RealMatrix |
computeCovarianceMatrix(double[][] data,
boolean biasCorrected)
Compute a covariance matrix from a rectangular array whose columns represent
covariates.
|
protected RealMatrix |
computeCovarianceMatrix(RealMatrix matrix)
Create a covariance matrix from a matrix whose columns represent
covariates.
|
protected RealMatrix |
computeCovarianceMatrix(RealMatrix matrix,
boolean biasCorrected)
Compute a covariance matrix from a matrix whose columns represent
covariates.
|
double |
covariance(double[] xArray,
double[] yArray)
Computes the covariance between the two arrays, using the bias-corrected
formula.
|
double |
covariance(double[] xArray,
double[] yArray,
boolean biasCorrected)
Computes the covariance between the two arrays.
|
RealMatrix |
getCovarianceMatrix()
Returns the covariance matrix
|
int |
getN()
Returns the number of observations (length of covariate vectors)
|
public Covariance()
public Covariance(double[][] data, boolean biasCorrected)
The biasCorrected
parameter determines whether or not covariance estimates are bias-corrected.
The input array must be rectangular with at least two columns and two rows.
data
- rectangular array with columns representing covariatesbiasCorrected
- true means covariances are bias-correctedMathIllegalArgumentException
- if the input data array is not
rectangular with at least two rows and two columns.public Covariance(double[][] data)
The input array must be rectangular with at least two columns and two rows
data
- rectangular array with columns representing covariatesMathIllegalArgumentException
- if the input data array is not
rectangular with at least two rows and two columns.public Covariance(RealMatrix matrix, boolean biasCorrected)
The biasCorrected
parameter determines whether or not covariance estimates are bias-corrected.
The matrix must have at least two columns and two rows
matrix
- matrix with columns representing covariatesbiasCorrected
- true means covariances are bias-correctedMathIllegalArgumentException
- if the input matrix does not have
at least two rows and two columnspublic Covariance(RealMatrix matrix)
The matrix must have at least two columns and two rows
matrix
- matrix with columns representing covariatesMathIllegalArgumentException
- if the input matrix does not have
at least two rows and two columnspublic RealMatrix getCovarianceMatrix()
public int getN()
protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected)
matrix
- input matrix (must have at least two columns and two rows)biasCorrected
- determines whether or not covariance estimates are bias-correctedMathIllegalArgumentException
- if the matrix does not contain sufficient dataprotected RealMatrix computeCovarianceMatrix(RealMatrix matrix)
matrix
- input matrix (must have at least two columns and two rows)MathIllegalArgumentException
- if matrix does not contain sufficient dataCovariance(fr.cnes.sirius.patrius.math.linear.RealMatrix)
protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected)
data
- input array (must have at least two columns and two rows)biasCorrected
- determines whether or not covariance estimates are bias-correctedMathIllegalArgumentException
- if the data array does not contain sufficient
dataprotected RealMatrix computeCovarianceMatrix(double[][] data)
data
- input array (must have at least two columns and two rows)MathIllegalArgumentException
- if the data array does not contain sufficient dataCovariance(fr.cnes.sirius.patrius.math.linear.RealMatrix)
public double covariance(double[] xArray, double[] yArray, boolean biasCorrected)
Array lengths must match and the common length must be at least 2.
xArray
- first data arrayyArray
- second data arraybiasCorrected
- if true, returned value will be bias-correctedMathIllegalArgumentException
- if the arrays lengths do not match or
there is insufficient datapublic double covariance(double[] xArray, double[] yArray)
Array lengths must match and the common length must be at least 2.
xArray
- first data arrayyArray
- second data arrayMathIllegalArgumentException
- if the arrays lengths do not match or
there is insufficient dataCopyright © 2020 CNES. All rights reserved.