public class GLSMultipleLinearRegression extends AbstractMultipleLinearRegression
u ~ N(0, Omega)Estimated by GLS,
b=(X' Omega^-1 X)^-1X'Omega^-1 ywhose variance is
Var(b)=(X' Omega^-1 X)^-1
Constructor and Description |
---|
GLSMultipleLinearRegression() |
Modifier and Type | Method and Description |
---|---|
protected RealVector |
calculateBeta()
Calculates beta by GLS.
|
protected RealMatrix |
calculateBetaVariance()
Calculates the variance on the beta.
|
protected double |
calculateErrorVariance()
Calculates the estimated variance of the error term using the formula
Var(u) = Tr(u' Omega^-1 u)/(n-k)
where n and k are the row and column dimensions of the design
matrix X.
|
protected RealMatrix |
getOmegaInverse()
Get the inverse of the covariance.
|
protected void |
newCovarianceData(double[][] omegaIn)
Add the covariance data.
|
void |
newSampleData(double[] y,
double[][] x,
double[][] covariance)
Replace sample data, overriding any previous sample.
|
calculateResiduals, calculateYVariance, estimateErrorVariance, estimateRegressandVariance, estimateRegressionParameters, estimateRegressionParametersStandardErrors, estimateRegressionParametersVariance, estimateRegressionStandardError, estimateResiduals, getX, getY, isNoIntercept, newSampleData, newXSampleData, newYSampleData, setNoIntercept, validateCovarianceData, validateSampleData
public void newSampleData(double[] y, double[][] x, double[][] covariance)
y
- y values of the samplex
- x values of the samplecovariance
- array representing the covariance matrixprotected void newCovarianceData(double[][] omegaIn)
omegaIn
- the [n,n] array representing the covarianceprotected RealMatrix getOmegaInverse()
The inverse of the covariance matrix is lazily evaluated and cached.
protected RealVector calculateBeta()
b=(X' Omega^-1 X)^-1X'Omega^-1 y
calculateBeta
in class AbstractMultipleLinearRegression
protected RealMatrix calculateBetaVariance()
Var(b)=(X' Omega^-1 X)^-1
calculateBetaVariance
in class AbstractMultipleLinearRegression
protected double calculateErrorVariance()
Var(u) = Tr(u' Omega^-1 u)/(n-k)where n and k are the row and column dimensions of the design matrix X.
calculateErrorVariance
in class AbstractMultipleLinearRegression
Copyright © 2021 CNES. All rights reserved.