public interface IntegerDistribution
Modifier and Type | Method and Description |
---|---|
double |
cumulativeProbability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x) . |
double |
cumulativeProbability(int x0,
int x1)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1) . |
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
int |
getSupportLowerBound()
Access the lower bound of the support.
|
int |
getSupportUpperBound()
Access the upper bound of the support.
|
int |
inverseCumulativeProbability(double p)
Computes the quantile function of this distribution.
|
boolean |
isSupportConnected()
Use this method to get information about whether the support is
connected, i.e.
|
double |
probability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X = x) . |
void |
reseedRandomGenerator(long seed)
Reseed the random generator used to generate samples.
|
int |
sample()
Generate a random value sampled from this distribution.
|
int[] |
sample(int sampleSize)
Generate a random sample from the distribution.
|
double probability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X = x)
. In other
words, this method represents the probability mass function (PMF)
for the distribution.x
- the point at which the PMF is evaluatedx
double cumulativeProbability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X <= x)
. In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.x
- the point at which the CDF is evaluatedx
double cumulativeProbability(int x0, int x1)
X
whose values are distributed according
to this distribution, this method returns P(x0 < X <= x1)
.x0
- the exclusive lower boundx1
- the inclusive upper boundx0
and x1
,
excluding the lower and including the upper endpointNumberIsTooLargeException
- if x0 > x1
int inverseCumulativeProbability(double p)
X
distributed according to this distribution,
the returned value is
inf{x in Z | P(X<=x) >= p}
for 0 < p <= 1
,inf{x in Z | P(X<=x) > 0}
for p = 0
.int
,
then Integer.MIN_VALUE
or Integer.MAX_VALUE
is returned.p
- the cumulative probabilityp
-quantile of this distribution
(largest 0-quantile for p = 0
)OutOfRangeException
- if p < 0
or p > 1
double getNumericalMean()
Double.NaN
if it is not defineddouble getNumericalVariance()
Double.POSITIVE_INFINITY
or Double.NaN
if it is not defined)int getSupportLowerBound()
inverseCumulativeProbability(0)
. In other words, this
method must return
inf {x in Z | P(X <= x) > 0}
.
Integer.MIN_VALUE
for negative infinity)int getSupportUpperBound()
inverseCumulativeProbability(1)
. In other words, this
method must return
inf {x in R | P(X <= x) = 1}
.
Integer.MAX_VALUE
for positive infinity)boolean isSupportConnected()
void reseedRandomGenerator(long seed)
seed
- the new seedint sample()
int[] sample(int sampleSize)
sampleSize
- the number of random values to generateNotStrictlyPositiveException
- if sampleSize
is not positiveCopyright © 2017 CNES. All rights reserved.