public class PoissonDistribution extends AbstractIntegerDistribution
Modifier and Type | Field and Description |
---|---|
static double |
DEFAULT_EPSILON
Default convergence criterion.
|
static int |
DEFAULT_MAX_ITERATIONS
Default maximum number of iterations for cumulative probability calculations.
|
random
Constructor and Description |
---|
PoissonDistribution(double p)
Creates a new Poisson distribution with specified mean.
|
PoissonDistribution(double p,
double epsilonIn)
Creates a new Poisson distribution with the specified mean and
convergence criterion.
|
PoissonDistribution(double p,
double epsilonIn,
int maxIterationsIn)
Creates a new Poisson distribution with specified mean, convergence
criterion and maximum number of iterations.
|
PoissonDistribution(double p,
int maxIterationsIn)
Creates a new Poisson distribution with the specified mean and maximum
number of iterations.
|
PoissonDistribution(RandomGenerator rng,
double p,
double epsilonIn,
int maxIterationsIn)
Creates a new Poisson distribution with specified mean, convergence
criterion and maximum number of iterations.
|
Modifier and Type | Method and Description |
---|---|
double |
cumulativeProbability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x) . |
double |
getMean()
Get the mean for the distribution.
|
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
int |
getSupportLowerBound()
Access the lower bound of the support.
|
int |
getSupportUpperBound()
Access the upper bound of the support.
|
boolean |
isSupportConnected()
Use this method to get information about whether the support is
connected, i.e.
|
double |
normalApproximateProbability(int x)
Calculates the Poisson distribution function using a normal
approximation.
|
double |
probability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X = x) . |
int |
sample()
Generate a random value sampled from this distribution.
|
cumulativeProbability, inverseCumulativeProbability, reseedRandomGenerator, sample, solveInverseCumulativeProbability
public static final int DEFAULT_MAX_ITERATIONS
public static final double DEFAULT_EPSILON
public PoissonDistribution(double p)
p
- the Poisson meanNotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(double p, double epsilonIn, int maxIterationsIn)
p
- Poisson mean.epsilonIn
- Convergence criterion for cumulative probabilities.maxIterationsIn
- the maximum number of iterations for cumulative
probabilities.NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(RandomGenerator rng, double p, double epsilonIn, int maxIterationsIn)
rng
- Random number generator.p
- Poisson mean.epsilonIn
- Convergence criterion for cumulative probabilities.maxIterationsIn
- the maximum number of iterations for cumulative
probabilities.NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(double p, double epsilonIn)
p
- Poisson mean.epsilonIn
- Convergence criterion for cumulative probabilities.NotStrictlyPositiveException
- if p <= 0
.public PoissonDistribution(double p, int maxIterationsIn)
p
- Poisson mean.maxIterationsIn
- Maximum number of iterations for cumulative
probabilities.public double getMean()
public double probability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X = x)
. In other
words, this method represents the probability mass function (PMF)
for the distribution.x
- the point at which the PMF is evaluatedx
public double cumulativeProbability(int x)
X
whose values are distributed according
to this distribution, this method returns P(X <= x)
. In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.x
- the point at which the CDF is evaluatedx
public double normalApproximateProbability(int x)
N(mean, sqrt(mean))
distribution is used
to approximate the Poisson distribution. The computation uses
"half-correction" (evaluating the normal distribution function at x + 0.5
).x
- Upper bound, inclusive.public double getNumericalMean()
p
, the mean is p
.Double.NaN
if it is not definedpublic double getNumericalVariance()
p
, the variance is p
.Double.POSITIVE_INFINITY
or Double.NaN
if it is not defined)public int getSupportLowerBound()
inverseCumulativeProbability(0)
. In other words, this
method must return
inf {x in Z | P(X <= x) > 0}
.
public int getSupportUpperBound()
inverseCumulativeProbability(1)
. In other words, this
method must return
inf {x in R | P(X <= x) = 1}
.
Integer.MAX_VALUE
.Integer.MAX_VALUE
for
positive infinity)public boolean isSupportConnected()
true
public int sample()
Algorithm Description:
Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.
sample
in interface IntegerDistribution
sample
in class AbstractIntegerDistribution
Copyright © 2017 CNES. All rights reserved.