public abstract class RungeKuttaIntegrator extends AbstractIntegrator
These methods are explicit Runge-Kutta methods, their Butcher arrays are as follows :
0 | c2 | a21 c3 | a31 a32 ... | ... cs | as1 as2 ... ass-1 |-------------------------- | b1 b2 ... bs-1 bs
EulerIntegrator
,
ClassicalRungeKuttaIntegrator
,
GillIntegrator
,
MidpointIntegrator
isLastStep, lastStepHandle, resetOccurred, stepHandlers, stepSize, stepStart
Modifier | Constructor and Description |
---|---|
protected |
RungeKuttaIntegrator(String name,
double[] cIn,
double[][] aIn,
double[] bIn,
fr.cnes.sirius.patrius.math.ode.nonstiff.RungeKuttaStepInterpolator prototypeIn,
double stepIn)
Simple constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
integrate(ExpandableStatefulODE equations,
double t)
Integrate a set of differential equations up to the given time.
|
acceptStep, addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCurrentSignedStepsize, getCurrentStepStart, getEvaluations, getEventHandlers, getMaxEvaluations, getName, getStepHandlers, handleLastStep, initIntegration, integrate, removeEventState, sanityChecks, setEquations, setMaxEvaluations, setStateInitialized
addObserver, clearChanged, countObservers, deleteObserver, deleteObservers, hasChanged, notifyObservers, notifyObservers, setChanged
protected RungeKuttaIntegrator(String name, double[] cIn, double[][] aIn, double[] bIn, fr.cnes.sirius.patrius.math.ode.nonstiff.RungeKuttaStepInterpolator prototypeIn, double stepIn)
name
- name of the methodcIn
- time steps from Butcher array (without the first zero)aIn
- internal weights from Butcher array (without the first empty row)bIn
- propagation weights for the high order method from Butcher arrayprototypeIn
- prototype of the step interpolator to usestepIn
- integration steppublic void integrate(ExpandableStatefulODE equations, double t)
This method solves an Initial Value Problem (IVP).
The set of differential equations is composed of a main set, which can be extended by some sets of secondary equations. The set of equations must be already set up with initial time and partial states. At integration completion, the final time and partial states will be available in the same object.
Since this method stores some internal state variables made available in its public interface during integration
(AbstractIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.
integrate
in class AbstractIntegrator
equations
- complete set of differential equations to integratet
- target time for the integration
(can be set to a value smaller than t0
for backward integration)Copyright © 2019 CNES. All rights reserved.