public final class AlternateEquinoctialOrbit extends Orbit
The parameters used internally are the alternate equinoctial elements (see AlternateEquinoctialParameters
for
more information.
The instance AlternateEquinoctialOrbit
is guaranteed to be immutable.
Orbit
,
KeplerianOrbit
,
CircularOrbit
,
CartesianOrbit
,
Serialized FormConstructor and Description |
---|
AlternateEquinoctialOrbit(double n,
double ex,
double ey,
double hx,
double hy,
double l,
PositionAngle type,
Frame frame,
AbsoluteDate date,
double mu)
Creates a new instance.
|
AlternateEquinoctialOrbit(IOrbitalParameters parametersIn,
Frame frame,
AbsoluteDate date)
Creates a new instance.
|
AlternateEquinoctialOrbit(Orbit op)
Constructor from any kind of orbital parameters.
|
AlternateEquinoctialOrbit(PVCoordinates pvCoordinates,
Frame frame,
AbsoluteDate date,
double mu)
Constructor from cartesian parameters.
|
Modifier and Type | Method and Description |
---|---|
protected double[][] |
computeJacobianCartesianWrtTrue()
Compute the Jacobian of the Cartesian parameters with respect to the orbital parameters with
true angle.
|
protected double[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
double |
getA()
Get the semi-major axis.
|
AlternateEquinoctialParameters |
getAlternateEquinoctialParameters()
Getter for underlying equinoctial parameters.
|
double |
getE()
Get the eccentricity.
|
double |
getEquinoctialEx()
Get the first component of the eccentricity vector.
|
double |
getEquinoctialEy()
Get the second component of the eccentricity vector.
|
double |
getHx()
Get the first component of the inclination vector.
|
double |
getHy()
Get the second component of the inclination vector.
|
double |
getI()
Get the inclination.
|
void |
getJacobianWrtParameters(PositionAngle type,
double[][] jacobian)
Compute the Jacobian of the Cartesian parameters with respect to the orbital parameters.
|
double |
getL(PositionAngle type)
Get the longitude argument.
|
double |
getLE()
Get the eccentric longitude argument.
|
double |
getLM()
Get the mean longitude argument.
|
double |
getLv()
Get the true longitude argument.
|
double |
getN()
Get the mean motion.
|
IOrbitalParameters |
getParameters()
Get underlying orbital parameters.
|
OrbitType |
getType()
Get the orbit type.
|
protected PVCoordinates |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
AlternateEquinoctialOrbit |
interpolate(AbsoluteDate date,
Collection<Orbit> sample)
Get an interpolated instance.
|
protected void |
orbitAddKeplerContribution(PositionAngle type,
double gm,
double[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
This method is used by numerical propagators to evaluate the part of Keplerrian motion to evolution of the
orbital state.
|
protected AlternateEquinoctialOrbit |
orbitShiftedBy(double dt)
Get a time-shifted orbit.
|
String |
toString() |
addKeplerContribution, createInverseJacobian, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobian, getJacobian, getJacobianWrtCartesian, getJacobianWrtParametersEccentric, getJacobianWrtParametersMean, getJacobianWrtParametersTrue, getKeplerianMeanMotion, getKeplerianPeriod, getKeplerianTransitionMatrix, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, isPositiveDefinite, setJacobianWrtParametersEccentric, setJacobianWrtParametersMean, setJacobianWrtParametersTrue, shiftedBy
public AlternateEquinoctialOrbit(IOrbitalParameters parametersIn, Frame frame, AbsoluteDate date)
parametersIn
- orbital parametersframe
- the frame in which the parameters are defined
(must be a pseudo-inertial frame
)date
- date of the orbital parameterspublic AlternateEquinoctialOrbit(double n, double ex, double ey, double hx, double hy, double l, PositionAngle type, Frame frame, AbsoluteDate date, double mu)
n
- mean motion (1/s)ex
- e cos(ω + Ω), first component of eccentricity vectorey
- e sin(ω + Ω), second component of eccentricity vectorhx
- tan(i/2) cos(Ω), first component of inclination vectorhy
- tan(i/2) sin(Ω), second component of inclination vectorl
- (M or E or v) + ω + Ω, mean, eccentric or true longitude argument (rad)type
- type of longitude argumentframe
- the frame in which the parameters are defineddate
- date of the orbital parametersmu
- central attraction coefficient (m3/s2)IllegalArgumentException
- if eccentricity is equal to 1 or largerpublic AlternateEquinoctialOrbit(PVCoordinates pvCoordinates, Frame frame, AbsoluteDate date, double mu)
pvCoordinates
- the position end velocityframe
- the frame in which are defined the PVCoordinates
date
- date of the orbital parametersmu
- central attraction coefficient (m3/s2)IllegalArgumentException
- if eccentricity is equal to 1 or largerpublic AlternateEquinoctialOrbit(Orbit op)
op
- orbital parameters to copypublic IOrbitalParameters getParameters()
getParameters
in class Orbit
public AlternateEquinoctialParameters getAlternateEquinoctialParameters()
public OrbitType getType()
public double getN()
public double getEquinoctialEx()
getEquinoctialEx
in class Orbit
public double getEquinoctialEy()
getEquinoctialEy
in class Orbit
public double getHx()
public double getHy()
public double getL(PositionAngle type)
type
- type of the anglepublic double getLv()
public double getLE()
public double getLM()
public double getA()
public double getE()
public double getI()
protected PVCoordinates initPVCoordinates()
initPVCoordinates
in class Orbit
protected AlternateEquinoctialOrbit orbitShiftedBy(double dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
orbitShiftedBy
in class Orbit
dt
- time shift in secondspublic AlternateEquinoctialOrbit interpolate(AbsoluteDate date, Collection<Orbit> sample)
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
The interpolated instance is created by polynomial Hermite interpolation on equinoctial elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
date
- interpolation datesample
- sample points on which interpolation should be doneprotected double[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian
in class Orbit
Orbit.computeJacobianEccentricWrtCartesian()
,
Orbit.computeJacobianTrueWrtCartesian()
protected double[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian
in class Orbit
Orbit.computeJacobianMeanWrtCartesian()
,
Orbit.computeJacobianTrueWrtCartesian()
protected double[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian
in class Orbit
Orbit.computeJacobianMeanWrtCartesian()
,
Orbit.computeJacobianEccentricWrtCartesian()
public void getJacobianWrtParameters(PositionAngle type, double[][] jacobian)
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
getJacobianWrtParameters
in class Orbit
type
- type of the position angle to usejacobian
- placeholder 6x6 (or larger) matrix to be filled with the Jacobian, if matrix
is larger than 6x6, only the 6x6 upper left corner will be modifiedprotected double[][] computeJacobianCartesianWrtTrue()
Element jacobian[i][j]
is the derivative of Cartesian coordinate i with respect to the parameter j of the
orbit. This means each column correspond to one orbital parameter whereas rows 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian()
,
computeJacobianEccentricWrtCartesian()
protected void orbitAddKeplerContribution(PositionAngle type, double gm, double[] pDot)
This method is used by numerical propagators to evaluate the part of Keplerrian motion to evolution of the orbital state.
orbitAddKeplerContribution
in class Orbit
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)Copyright © 2019 CNES. All rights reserved.