public final class ApsisOrbit extends Orbit
The parameters used internally are the periapsis/apoapsis elements (see ApsisRadiusParameters
for more
information.
The instance ApsisOrbit
is guaranteed to be immutable.
Orbit
,
KeplerianOrbit
,
CartesianOrbit
,
EquinoctialOrbit
,
Serialized FormConstructor and Description |
---|
ApsisOrbit(double peri,
double apo,
double i,
double pa,
double raan,
double anomaly,
PositionAngle type,
Frame frame,
AbsoluteDate date,
double mu)
Creates a new instance.
|
ApsisOrbit(IOrbitalParameters parametersIn,
Frame frame,
AbsoluteDate date)
Creates a new instance.
|
ApsisOrbit(Orbit op)
Constructor from any kind of orbital parameters.
|
ApsisOrbit(PVCoordinates pvCoordinates,
Frame frame,
AbsoluteDate date,
double mu)
Constructor from cartesian parameters.
|
Modifier and Type | Method and Description |
---|---|
protected double[][] |
computeJacobianEccentricWrtCartesian()
Compute the Jacobian of the orbital parameters with eccentric angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianMeanWrtCartesian()
Compute the Jacobian of the orbital parameters with mean angle with respect to the Cartesian parameters.
|
protected double[][] |
computeJacobianTrueWrtCartesian()
Compute the Jacobian of the orbital parameters with true angle with respect to the Cartesian parameters.
|
double |
getA()
Get the semi-major axis.
|
double |
getAnomaly(PositionAngle type)
Get the anomaly.
|
double |
getApoapsis()
Get the apoapsis.
|
ApsisRadiusParameters |
getApsisParameters()
Getter for underlying apsis parameters.
|
double |
getE()
Get the eccentricity.
|
double |
getEquinoctialEx()
Get the first component of the equinoctial eccentricity vector.
|
double |
getEquinoctialEy()
Get the second component of the equinoctial eccentricity vector.
|
double |
getHx()
Get hx = ix / (2 * cos(i/2)), where ix is the first component of the inclination vector.
|
double |
getHy()
Get hy = iy / (2 * cos(i/2)), where iy is the second component of the inclination vector.
|
double |
getI()
Get the inclination.
|
double |
getLE()
Get the eccentric longitude argument.
|
double |
getLM()
Get the mean longitude argument.
|
double |
getLv()
Get the true longitude argument.
|
double |
getN()
Get the mean motion.
|
IOrbitalParameters |
getParameters()
Get underlying orbital parameters.
|
double |
getPeriapsis()
Get the periapsis.
|
double |
getPerigeeArgument()
Get the perigee argument.
|
double |
getRightAscensionOfAscendingNode()
Get the right ascension of the ascending node.
|
OrbitType |
getType()
Get the orbit type.
|
protected PVCoordinates |
initPVCoordinates()
Compute the position/velocity coordinates from the canonical parameters.
|
ApsisOrbit |
interpolate(AbsoluteDate date,
Collection<Orbit> sample)
Get an interpolated instance.
|
protected void |
orbitAddKeplerContribution(PositionAngle type,
double gm,
double[] pDot)
Add the contribution of the Keplerian motion to parameters derivatives
This method is used by numerical propagators to evaluate the part of Keplerrian motion to evolution of the
orbital state.
|
protected ApsisOrbit |
orbitShiftedBy(double dt)
Get a time-shifted orbit.
|
String |
toString() |
addKeplerContribution, createInverseJacobian, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, fillHalfRow, getDate, getFrame, getJacobian, getJacobian, getJacobianWrtCartesian, getJacobianWrtParameters, getJacobianWrtParametersEccentric, getJacobianWrtParametersMean, getJacobianWrtParametersTrue, getKeplerianMeanMotion, getKeplerianPeriod, getKeplerianTransitionMatrix, getMu, getPVCoordinates, getPVCoordinates, getPVCoordinates, isPositiveDefinite, setJacobianWrtParametersEccentric, setJacobianWrtParametersMean, setJacobianWrtParametersTrue, shiftedBy
public ApsisOrbit(IOrbitalParameters parametersIn, Frame frame, AbsoluteDate date)
parametersIn
- orbital parametersframe
- the frame in which the parameters are defineddate
- date of the orbital parameterspublic ApsisOrbit(double peri, double apo, double i, double pa, double raan, double anomaly, PositionAngle type, Frame frame, AbsoluteDate date, double mu)
peri
- periapsis distance (m)apo
- apoapsis distance (m)i
- inclination (rad)pa
- perigee argument (ω, rad)raan
- right ascension of ascending node (Ω, rad)anomaly
- mean, eccentric or true anomaly (rad).type
- type of anomalyframe
- the frame in which are defined the parametersdate
- date of the orbital parametersmu
- central attraction coefficient (m3/s2)public ApsisOrbit(PVCoordinates pvCoordinates, Frame frame, AbsoluteDate date, double mu)
pvCoordinates
- the PVCoordinates
in inertial frameframe
- the frame in which are defined the PVCoordinates
date
- date of the orbital parametersmu
- central attraction coefficient (m3/s2)public ApsisOrbit(Orbit op)
op
- orbital parameters to copypublic IOrbitalParameters getParameters()
getParameters
in class Orbit
public ApsisRadiusParameters getApsisParameters()
public OrbitType getType()
public double getPeriapsis()
public double getApoapsis()
public double getA()
Note that the semi-major axis is considered negative for hyperbolic orbits.
public double getEquinoctialEx()
getEquinoctialEx
in class Orbit
public double getEquinoctialEy()
getEquinoctialEy
in class Orbit
public double getHx()
public double getHy()
public double getAnomaly(PositionAngle type)
type
- type of the anglepublic double getE()
public double getI()
public double getPerigeeArgument()
public double getRightAscensionOfAscendingNode()
public double getLv()
public double getLE()
public double getLM()
public double getN()
protected PVCoordinates initPVCoordinates()
initPVCoordinates
in class Orbit
protected ApsisOrbit orbitShiftedBy(double dt)
The orbit can be slightly shifted to close dates. This shift is based on a simple keplerian model. It is not intended as a replacement for proper orbit and attitude propagation but should be sufficient for small time shifts or coarse accuracy.
orbitShiftedBy
in class Orbit
dt
- time shift in secondspublic ApsisOrbit interpolate(AbsoluteDate date, Collection<Orbit> sample)
Note that the state of the current instance may not be used in the interpolation process, only its type and non interpolable fields are used (for example central attraction coefficient or frame when interpolating orbits). The interpolable fields taken into account are taken only from the states of the sample points. So if the state of the instance must be used, the instance should be included in the sample points.
The interpolated instance is created by polynomial Hermite interpolation on circular elements, without derivatives (which means the interpolation falls back to Lagrange interpolation only).
date
- interpolation datesample
- sample points on which interpolation should be doneprotected double[][] computeJacobianMeanWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianMeanWrtCartesian
in class Orbit
Orbit.computeJacobianEccentricWrtCartesian()
,
Orbit.computeJacobianTrueWrtCartesian()
protected double[][] computeJacobianEccentricWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianEccentricWrtCartesian
in class Orbit
Orbit.computeJacobianMeanWrtCartesian()
,
Orbit.computeJacobianTrueWrtCartesian()
protected double[][] computeJacobianTrueWrtCartesian()
Element jacobian[i][j]
is the derivative of parameter i of the orbit with respect to Cartesian coordinate
j. This means each row correspond to one orbital parameter whereas columns 0 to 5 correspond to the Cartesian
coordinates x, y, z, xDot, yDot and zDot.
computeJacobianTrueWrtCartesian
in class Orbit
Orbit.computeJacobianMeanWrtCartesian()
,
Orbit.computeJacobianEccentricWrtCartesian()
protected void orbitAddKeplerContribution(PositionAngle type, double gm, double[] pDot)
This method is used by numerical propagators to evaluate the part of Keplerrian motion to evolution of the orbital state.
orbitAddKeplerContribution
in class Orbit
type
- type of the position angle in the stategm
- attraction coefficient to usepDot
- array containing orbital state derivatives to update (the Keplerian
part must be added to the array components, as the array may already
contain some non-zero elements corresponding to non-Keplerian parts)Copyright © 2019 CNES. All rights reserved.